mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-20 19:56:59 +00:00
Merge branch 'main' into nvidia-e2e-notebook
This commit is contained in:
commit
7cdd2a0410
264 changed files with 229042 additions and 8445 deletions
|
@ -231,7 +231,7 @@ options:
|
|||
-h, --help show this help message and exit
|
||||
--port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. (default: 8321)
|
||||
--image-name IMAGE_NAME
|
||||
Name of the image to run. Defaults to the current conda environment (default: None)
|
||||
Name of the image to run. Defaults to the current environment (default: None)
|
||||
--disable-ipv6 Disable IPv6 support (default: False)
|
||||
--env KEY=VALUE Environment variables to pass to the server in KEY=VALUE format. Can be specified multiple times. (default: [])
|
||||
--tls-keyfile TLS_KEYFILE
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
The Llama Stack runtime configuration is specified as a YAML file. Here is a simplified version of an example configuration file for the Ollama distribution:
|
||||
|
||||
```{dropdown} Sample Configuration File
|
||||
```{dropdown} 👋 Click here for a Sample Configuration File
|
||||
|
||||
```yaml
|
||||
version: 2
|
||||
|
|
|
@ -17,7 +17,7 @@ client = LlamaStackAsLibraryClient(
|
|||
# provider_data is optional, but if you need to pass in any provider specific data, you can do so here.
|
||||
provider_data={"tavily_search_api_key": os.environ["TAVILY_SEARCH_API_KEY"]},
|
||||
)
|
||||
await client.initialize()
|
||||
client.initialize()
|
||||
```
|
||||
|
||||
This will parse your config and set up any inline implementations and remote clients needed for your implementation.
|
||||
|
|
|
@ -7,13 +7,18 @@ In this guide, we'll use a local [Kind](https://kind.sigs.k8s.io/) cluster and a
|
|||
|
||||
First, create a local Kubernetes cluster via Kind:
|
||||
|
||||
```bash
|
||||
```
|
||||
kind create cluster --image kindest/node:v1.32.0 --name llama-stack-test
|
||||
```
|
||||
|
||||
First, create a Kubernetes PVC and Secret for downloading and storing Hugging Face model:
|
||||
First set your hugging face token as an environment variable.
|
||||
```
|
||||
export HF_TOKEN=$(echo -n "your-hf-token" | base64)
|
||||
```
|
||||
|
||||
```bash
|
||||
Now create a Kubernetes PVC and Secret for downloading and storing Hugging Face model:
|
||||
|
||||
```
|
||||
cat <<EOF |kubectl apply -f -
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
|
@ -33,13 +38,14 @@ metadata:
|
|||
name: hf-token-secret
|
||||
type: Opaque
|
||||
data:
|
||||
token: $(HF_TOKEN)
|
||||
token: $HF_TOKEN
|
||||
EOF
|
||||
```
|
||||
|
||||
|
||||
Next, start the vLLM server as a Kubernetes Deployment and Service:
|
||||
|
||||
```bash
|
||||
```
|
||||
cat <<EOF |kubectl apply -f -
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
|
@ -95,7 +101,7 @@ EOF
|
|||
|
||||
We can verify that the vLLM server has started successfully via the logs (this might take a couple of minutes to download the model):
|
||||
|
||||
```bash
|
||||
```
|
||||
$ kubectl logs -l app.kubernetes.io/name=vllm
|
||||
...
|
||||
INFO: Started server process [1]
|
||||
|
@ -119,8 +125,8 @@ providers:
|
|||
|
||||
Once we have defined the run configuration for Llama Stack, we can build an image with that configuration and the server source code:
|
||||
|
||||
```bash
|
||||
cat >/tmp/test-vllm-llama-stack/Containerfile.llama-stack-run-k8s <<EOF
|
||||
```
|
||||
tmp_dir=$(mktemp -d) && cat >$tmp_dir/Containerfile.llama-stack-run-k8s <<EOF
|
||||
FROM distribution-myenv:dev
|
||||
|
||||
RUN apt-get update && apt-get install -y git
|
||||
|
@ -128,14 +134,14 @@ RUN git clone https://github.com/meta-llama/llama-stack.git /app/llama-stack-sou
|
|||
|
||||
ADD ./vllm-llama-stack-run-k8s.yaml /app/config.yaml
|
||||
EOF
|
||||
podman build -f /tmp/test-vllm-llama-stack/Containerfile.llama-stack-run-k8s -t llama-stack-run-k8s /tmp/test-vllm-llama-stack
|
||||
podman build -f $tmp_dir/Containerfile.llama-stack-run-k8s -t llama-stack-run-k8s $tmp_dir
|
||||
```
|
||||
|
||||
### Deploying Llama Stack Server in Kubernetes
|
||||
|
||||
We can then start the Llama Stack server by deploying a Kubernetes Pod and Service:
|
||||
|
||||
```bash
|
||||
```
|
||||
cat <<EOF |kubectl apply -f -
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
|
@ -195,7 +201,7 @@ EOF
|
|||
### Verifying the Deployment
|
||||
We can check that the LlamaStack server has started:
|
||||
|
||||
```bash
|
||||
```
|
||||
$ kubectl logs -l app.kubernetes.io/name=llama-stack
|
||||
...
|
||||
INFO: Started server process [1]
|
||||
|
@ -207,7 +213,7 @@ INFO: Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit
|
|||
|
||||
Finally, we forward the Kubernetes service to a local port and test some inference requests against it via the Llama Stack Client:
|
||||
|
||||
```bash
|
||||
```
|
||||
kubectl port-forward service/llama-stack-service 5000:5000
|
||||
llama-stack-client --endpoint http://localhost:5000 inference chat-completion --message "hello, what model are you?"
|
||||
```
|
||||
|
|
|
@ -46,6 +46,8 @@ The following models are available by default:
|
|||
- `accounts/fireworks/models/llama-v3p3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `accounts/fireworks/models/llama-guard-3-8b (aliases: meta-llama/Llama-Guard-3-8B)`
|
||||
- `accounts/fireworks/models/llama-guard-3-11b-vision (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
|
||||
- `accounts/fireworks/models/llama4-scout-instruct-basic (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
|
||||
- `accounts/fireworks/models/llama4-maverick-instruct-basic (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
|
||||
- `nomic-ai/nomic-embed-text-v1.5 `
|
||||
|
||||
|
||||
|
|
|
@ -42,6 +42,10 @@ The following models are available by default:
|
|||
- `groq/llama3-70b-8192 (aliases: meta-llama/Llama-3-70B-Instruct)`
|
||||
- `groq/llama-3.3-70b-versatile (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `groq/llama-3.2-3b-preview (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `groq/llama-4-scout-17b-16e-instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
|
||||
- `groq/meta-llama/llama-4-scout-17b-16e-instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
|
||||
- `groq/llama-4-maverick-17b-128e-instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
|
||||
- `groq/meta-llama/llama-4-maverick-17b-128e-instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# NVIDIA Distribution
|
||||
|
||||
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.
|
||||
|
@ -5,24 +6,49 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::nvidia` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| post_training | `remote::nvidia` |
|
||||
| safety | `remote::nvidia` |
|
||||
| scoring | `inline::basic` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
|
||||
- `NVIDIA_USER_ID`: NVIDIA User ID (default: `llama-stack-user`)
|
||||
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`)
|
||||
- `NVIDIA_ACCESS_POLICIES`: NVIDIA Access Policies (default: `{}`)
|
||||
- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`)
|
||||
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`)
|
||||
- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`)
|
||||
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
|
||||
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
|
||||
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `${env.INFERENCE_MODEL} (None)`
|
||||
- `meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)`
|
||||
- `meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)`
|
||||
- `meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
||||
- `meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
||||
- `meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
|
||||
- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `nvidia/llama-3.2-nv-embedqa-1b-v2 `
|
||||
- `nvidia/nv-embedqa-e5-v5 `
|
||||
- `nvidia/nv-embedqa-mistral-7b-v2 `
|
||||
- `snowflake/arctic-embed-l `
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
@ -58,4 +84,5 @@ llama stack build --template nvidia --image-type conda
|
|||
llama stack run ./run.yaml \
|
||||
--port 8321 \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
```
|
||||
|
|
|
@ -25,7 +25,7 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following
|
|||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.
|
||||
You can use this distribution if you want to run an independent vLLM server for inference.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
|
@ -41,6 +41,83 @@ The following environment variables can be configured:
|
|||
|
||||
## Setting up vLLM server
|
||||
|
||||
In the following sections, we'll use either AMD and NVIDIA GPUs to serve as hardware accelerators for the vLLM
|
||||
server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also
|
||||
[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and
|
||||
that we only use GPUs here for demonstration purposes.
|
||||
|
||||
### Setting up vLLM server on AMD GPU
|
||||
|
||||
AMD provides two main vLLM container options:
|
||||
- rocm/vllm: Production-ready container
|
||||
- rocm/vllm-dev: Development container with the latest vLLM features
|
||||
|
||||
Please check the [Blog about ROCm vLLM Usage](https://rocm.blogs.amd.com/software-tools-optimization/vllm-container/README.html) to get more details.
|
||||
|
||||
Here is a sample script to start a ROCm vLLM server locally via Docker:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
export VLLM_DIMG="rocm/vllm-dev:main"
|
||||
|
||||
docker run \
|
||||
--pull always \
|
||||
--ipc=host \
|
||||
--privileged \
|
||||
--shm-size 16g \
|
||||
--device=/dev/kfd \
|
||||
--device=/dev/dri \
|
||||
--group-add video \
|
||||
--cap-add=SYS_PTRACE \
|
||||
--cap-add=CAP_SYS_ADMIN \
|
||||
--security-opt seccomp=unconfined \
|
||||
--security-opt apparmor=unconfined \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
--env "HIP_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
$VLLM_DIMG \
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
```
|
||||
|
||||
Note that you'll also need to set `--enable-auto-tool-choice` and `--tool-call-parser` to [enable tool calling in vLLM](https://docs.vllm.ai/en/latest/features/tool_calling.html).
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
export VLLM_DIMG="rocm/vllm-dev:main"
|
||||
|
||||
docker run \
|
||||
--pull always \
|
||||
--ipc=host \
|
||||
--privileged \
|
||||
--shm-size 16g \
|
||||
--device=/dev/kfd \
|
||||
--device=/dev/dri \
|
||||
--group-add video \
|
||||
--cap-add=SYS_PTRACE \
|
||||
--cap-add=CAP_SYS_ADMIN \
|
||||
--security-opt seccomp=unconfined \
|
||||
--security-opt apparmor=unconfined \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
--env "HIP_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
$VLLM_DIMG \
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
### Setting up vLLM server on NVIDIA GPU
|
||||
|
||||
Please check the [vLLM Documentation](https://docs.vllm.ai/en/v0.5.5/serving/deploying_with_docker.html) to get a vLLM endpoint. Here is a sample script to start a vLLM server locally via Docker:
|
||||
|
||||
```bash
|
||||
|
|
|
@ -43,6 +43,7 @@ The following models are available by default:
|
|||
- `Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
|
||||
- `Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
@ -48,6 +48,8 @@ The following models are available by default:
|
|||
- `meta-llama/Llama-Guard-3-11B-Vision-Turbo (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
|
||||
- `togethercomputer/m2-bert-80M-8k-retrieval `
|
||||
- `togethercomputer/m2-bert-80M-32k-retrieval `
|
||||
- `meta-llama/Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct, together/meta-llama/Llama-4-Scout-17B-16E-Instruct)`
|
||||
- `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct, together/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
@ -2,22 +2,22 @@
|
|||
|
||||
You can run a Llama Stack server in one of the following ways:
|
||||
|
||||
**As a Library**:
|
||||
## As a Library:
|
||||
|
||||
This is the simplest way to get started. Using Llama Stack as a library means you do not need to start a server. This is especially useful when you are not running inference locally and relying on an external inference service (eg. fireworks, together, groq, etc.) See [Using Llama Stack as a Library](importing_as_library)
|
||||
|
||||
|
||||
**Container**:
|
||||
## Container:
|
||||
|
||||
Another simple way to start interacting with Llama Stack is to just spin up a container (via Docker or Podman) which is pre-built with all the providers you need. We provide a number of pre-built images so you can start a Llama Stack server instantly. You can also build your own custom container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](selection) for more details.
|
||||
|
||||
|
||||
**Conda**:
|
||||
## Conda:
|
||||
|
||||
If you have a custom or an advanced setup or you are developing on Llama Stack you can also build a custom Llama Stack server. Using `llama stack build` and `llama stack run` you can build/run a custom Llama Stack server containing the exact combination of providers you wish. We have also provided various templates to make getting started easier. See [Building a Custom Distribution](building_distro) for more details.
|
||||
|
||||
|
||||
**Kubernetes**:
|
||||
## Kubernetes:
|
||||
|
||||
If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](kubernetes_deployment) for more details.
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue