more fixes to postgres-store run yaml ugh

This commit is contained in:
Ashwin Bharambe 2025-11-10 15:54:00 -08:00
parent e6de865bcb
commit 7ce0c5c5dc
4 changed files with 89 additions and 101 deletions

View file

@ -170,7 +170,7 @@ providers:
namespace: agents namespace: agents
backend: kv_default backend: kv_default
responses: responses:
table_name: agent_responses table_name: responses
backend: sql_default backend: sql_default
max_write_queue_size: 10000 max_write_queue_size: 10000
num_writers: 4 num_writers: 4
@ -230,8 +230,6 @@ providers:
kvstore: kvstore:
namespace: batches namespace: batches
backend: kv_default backend: kv_default
max_concurrent_batches: 1
max_concurrent_requests_per_batch: 10
storage: storage:
backends: backends:
kv_default: kv_default:
@ -266,13 +264,30 @@ storage:
backend: kv_default backend: kv_default
registered_resources: registered_resources:
models: [] models: []
shields: [] shields:
- shield_id: llama-guard
provider_id: ${env.SAFETY_MODEL:+llama-guard}
provider_shield_id: ${env.SAFETY_MODEL:=}
- shield_id: code-scanner
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
vector_dbs: [] vector_dbs: []
datasets: [] datasets: []
scoring_fns: [] scoring_fns: []
benchmarks: [] benchmarks: []
tool_groups: [] tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server: server:
port: 8321 port: 8321
telemetry: telemetry:
enabled: true enabled: true
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
safety:
default_shield_id: llama-guard

View file

@ -170,7 +170,7 @@ providers:
namespace: agents namespace: agents
backend: kv_default backend: kv_default
responses: responses:
table_name: agent_responses table_name: responses
backend: sql_default backend: sql_default
max_write_queue_size: 10000 max_write_queue_size: 10000
num_writers: 4 num_writers: 4
@ -233,8 +233,6 @@ providers:
kvstore: kvstore:
namespace: batches namespace: batches
backend: kv_default backend: kv_default
max_concurrent_batches: 1
max_concurrent_requests_per_batch: 10
storage: storage:
backends: backends:
kv_default: kv_default:
@ -269,13 +267,30 @@ storage:
backend: kv_default backend: kv_default
registered_resources: registered_resources:
models: [] models: []
shields: [] shields:
- shield_id: llama-guard
provider_id: ${env.SAFETY_MODEL:+llama-guard}
provider_shield_id: ${env.SAFETY_MODEL:=}
- shield_id: code-scanner
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
vector_dbs: [] vector_dbs: []
datasets: [] datasets: []
scoring_fns: [] scoring_fns: []
benchmarks: [] benchmarks: []
tool_groups: [] tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server: server:
port: 8321 port: 8321
telemetry: telemetry:
enabled: true enabled: true
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
safety:
default_shield_id: llama-guard

View file

@ -170,7 +170,7 @@ providers:
namespace: agents namespace: agents
backend: kv_default backend: kv_default
responses: responses:
table_name: agent_responses table_name: responses
backend: sql_default backend: sql_default
max_write_queue_size: 10000 max_write_queue_size: 10000
num_writers: 4 num_writers: 4
@ -230,8 +230,6 @@ providers:
kvstore: kvstore:
namespace: batches namespace: batches
backend: kv_default backend: kv_default
max_concurrent_batches: 1
max_concurrent_requests_per_batch: 10
storage: storage:
backends: backends:
kv_default: kv_default:
@ -266,13 +264,30 @@ storage:
backend: kv_default backend: kv_default
registered_resources: registered_resources:
models: [] models: []
shields: [] shields:
- shield_id: llama-guard
provider_id: ${env.SAFETY_MODEL:+llama-guard}
provider_shield_id: ${env.SAFETY_MODEL:=}
- shield_id: code-scanner
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
vector_dbs: [] vector_dbs: []
datasets: [] datasets: []
scoring_fns: [] scoring_fns: []
benchmarks: [] benchmarks: []
tool_groups: [] tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server: server:
port: 8321 port: 8321
telemetry: telemetry:
enabled: true enabled: true
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
safety:
default_shield_id: llama-guard

View file

@ -17,22 +17,9 @@ from llama_stack.core.datatypes import (
ToolGroupInput, ToolGroupInput,
VectorStoresConfig, VectorStoresConfig,
) )
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ResponsesStoreReference,
SqlStoreReference,
)
from llama_stack.core.utils.dynamic import instantiate_class_type from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.distributions.template import DistributionTemplate, RunConfigSettings from llama_stack.distributions.template import DistributionTemplate, RunConfigSettings
from llama_stack.providers.datatypes import RemoteProviderSpec from llama_stack.providers.datatypes import RemoteProviderSpec
from llama_stack.providers.inline.agents.meta_reference.config import (
AgentPersistenceConfig,
MetaReferenceAgentsImplConfig,
)
from llama_stack.providers.inline.batches.reference.config import (
ReferenceBatchesImplConfig,
)
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
@ -254,6 +241,33 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
"files": [files_provider], "files": [files_provider],
} }
base_run_settings = RunConfigSettings(
provider_overrides=default_overrides,
default_models=[],
default_tool_groups=default_tool_groups,
default_shields=default_shields,
vector_stores_config=VectorStoresConfig(
default_provider_id="faiss",
default_embedding_model=QualifiedModel(
provider_id="sentence-transformers",
model_id="nomic-ai/nomic-embed-text-v1.5",
),
),
safety_config=SafetyConfig(
default_shield_id="llama-guard",
),
)
postgres_run_settings = base_run_settings.model_copy(
update={
"storage_backends": {
"kv_default": postgres_kv_config,
"sql_default": postgres_sql_config,
}
},
deep=True,
)
return DistributionTemplate( return DistributionTemplate(
name=name, name=name,
distro_type="self_hosted", distro_type="self_hosted",
@ -263,79 +277,8 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
providers=providers, providers=providers,
additional_pip_packages=list(set(PostgresSqlStoreConfig.pip_packages() + PostgresKVStoreConfig.pip_packages())), additional_pip_packages=list(set(PostgresSqlStoreConfig.pip_packages() + PostgresKVStoreConfig.pip_packages())),
run_configs={ run_configs={
"run.yaml": RunConfigSettings( "run.yaml": base_run_settings,
provider_overrides=default_overrides, "run-with-postgres-store.yaml": postgres_run_settings,
default_models=[],
default_tool_groups=default_tool_groups,
default_shields=default_shields,
vector_stores_config=VectorStoresConfig(
default_provider_id="faiss",
default_embedding_model=QualifiedModel(
provider_id="sentence-transformers",
model_id="nomic-ai/nomic-embed-text-v1.5",
),
),
safety_config=SafetyConfig(
default_shield_id="llama-guard",
),
),
"run-with-postgres-store.yaml": RunConfigSettings(
provider_overrides={
**default_overrides,
"agents": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
config=MetaReferenceAgentsImplConfig(
persistence=AgentPersistenceConfig(
agent_state=KVStoreReference(
backend="kv_default",
namespace="agents",
),
responses=ResponsesStoreReference(
backend="sql_default",
table_name="agent_responses",
),
),
).model_dump(exclude_none=True),
)
],
"batches": [
Provider(
provider_id="reference",
provider_type="inline::reference",
config=ReferenceBatchesImplConfig(
kvstore=KVStoreReference(
backend="kv_default",
namespace="batches",
),
).model_dump(exclude_none=True),
)
],
},
storage_backends={
"kv_default": postgres_kv_config,
"sql_default": postgres_sql_config,
},
storage_stores={
"metadata": KVStoreReference(
backend="kv_default",
namespace="registry",
).model_dump(exclude_none=True),
"inference": InferenceStoreReference(
backend="sql_default",
table_name="inference_store",
).model_dump(exclude_none=True),
"conversations": SqlStoreReference(
backend="sql_default",
table_name="openai_conversations",
).model_dump(exclude_none=True),
"prompts": KVStoreReference(
backend="kv_default",
namespace="prompts",
).model_dump(exclude_none=True),
},
),
}, },
run_config_env_vars={ run_config_env_vars={
"LLAMA_STACK_PORT": ( "LLAMA_STACK_PORT": (