mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
Delete docs/notebooks/langChain/langchain_llamastack_ray.py
Removed ray example
This commit is contained in:
parent
f591f77e86
commit
7d2ccd1d9f
1 changed files with 0 additions and 403 deletions
|
@ -1,403 +0,0 @@
|
|||
import os
|
||||
import re
|
||||
import html
|
||||
import json
|
||||
import time
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from readability import Document as ReadabilityDocument
|
||||
from markdownify import markdownify
|
||||
from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
||||
import tempfile
|
||||
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from typing import Optional, List, Any, Dict
|
||||
from langchain.chains import LLMChain
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
|
||||
from starlette.requests import Request
|
||||
from ray import serve
|
||||
|
||||
# Prompt Templates (defined globally)
|
||||
summary_template = PromptTemplate(
|
||||
input_variables=["document"],
|
||||
template="""Create a concise summary of this document in 5-10 sentences:
|
||||
|
||||
{document}
|
||||
|
||||
SUMMARY:"""
|
||||
)
|
||||
|
||||
facts_template = PromptTemplate(
|
||||
input_variables=["document"],
|
||||
template="""Extract the most important facts from this document. List them as bullet points:
|
||||
|
||||
{document}
|
||||
|
||||
KEY FACTS:
|
||||
-"""
|
||||
)
|
||||
|
||||
qa_template = PromptTemplate(
|
||||
input_variables=["document", "question"],
|
||||
template="""Based on the following document, answer the question. If the answer isn't in the document, say so.
|
||||
|
||||
DOCUMENT:
|
||||
{document}
|
||||
|
||||
QUESTION: {question}
|
||||
|
||||
ANSWER:"""
|
||||
)
|
||||
|
||||
class LlamaStackLLM(LLM):
|
||||
"""Simple LangChain wrapper for Llama Stack"""
|
||||
|
||||
# Pydantic model fields
|
||||
client: Any = None
|
||||
model_id: str = "llama3.2:3b"
|
||||
|
||||
def __init__(self, client, model_id: str = "llama3.2:3b"):
|
||||
# Initialize with field values
|
||||
super().__init__(client=client, model_id=model_id)
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs) -> str:
|
||||
"""Make inference call to Llama Stack"""
|
||||
response = self.client.inference.chat_completion(
|
||||
model_id=self.model_id,
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
)
|
||||
return response.completion_message.content
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "llama_stack"
|
||||
|
||||
|
||||
def load_document(source: str) -> str:
|
||||
is_url = source.startswith(('http://', 'https://'))
|
||||
is_pdf = source.lower().endswith('.pdf')
|
||||
if is_pdf:
|
||||
return load_pdf(source, is_url=is_url)
|
||||
elif is_url:
|
||||
return load_from_url(source)
|
||||
else:
|
||||
raise ValueError(f"Unsupported format. Use URLs or PDF files.")
|
||||
|
||||
|
||||
def load_pdf(source: str, is_url: bool = False) -> str:
|
||||
if is_url:
|
||||
response = requests.get(source)
|
||||
response.raise_for_status()
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
||||
temp_file.write(response.content)
|
||||
file_path = temp_file.name
|
||||
else:
|
||||
file_path = source
|
||||
try:
|
||||
loader = PyPDFLoader(file_path)
|
||||
docs = loader.load()
|
||||
return "\\n\\n".join([doc.page_content for doc in docs])
|
||||
finally:
|
||||
if is_url:
|
||||
os.remove(file_path)
|
||||
|
||||
|
||||
def load_from_url(url: str) -> str:
|
||||
headers = {'User-Agent': 'Mozilla/5.0 (compatible; DocumentLoader/1.0)'}
|
||||
response = requests.get(url, headers=headers, timeout=15)
|
||||
response.raise_for_status()
|
||||
doc = ReadabilityDocument(response.text)
|
||||
html_main = doc.summary(html_partial=True)
|
||||
soup = BeautifulSoup(html_main, "html.parser")
|
||||
for tag in soup(["script", "style", "noscript", "header", "footer", "nav", "aside"]):
|
||||
tag.decompose()
|
||||
md_text = markdownify(str(soup), heading_style="ATX")
|
||||
md_text = html.unescape(md_text)
|
||||
md_text = re.sub(r"\n{3,}", "\n\n", md_text).strip()
|
||||
return md_text
|
||||
|
||||
|
||||
@serve.deployment
|
||||
class LangChainLlamaStackService:
|
||||
"""Ray Serve deployment for LangChain + Llama Stack document processing"""
|
||||
|
||||
def __init__(self):
|
||||
print("🚀 Initializing LangChain + Llama Stack Service...")
|
||||
|
||||
# Initialize Llama Stack client
|
||||
self.client = LlamaStackClient(base_url="http://localhost:8321/")
|
||||
|
||||
# Initialize LangChain-compatible LLM
|
||||
self.llm = LlamaStackLLM(self.client)
|
||||
|
||||
# Create processing chains
|
||||
self.summary_chain = LLMChain(llm=self.llm, prompt=summary_template)
|
||||
self.facts_chain = LLMChain(llm=self.llm, prompt=facts_template)
|
||||
self.qa_chain = LLMChain(llm=self.llm, prompt=qa_template)
|
||||
|
||||
# Storage for processed documents
|
||||
self.processed_docs = {}
|
||||
|
||||
print("✅ Service initialized successfully!")
|
||||
|
||||
async def __call__(self, request: Request) -> Dict:
|
||||
"""Handle HTTP requests to different endpoints"""
|
||||
path = request.url.path
|
||||
method = request.method
|
||||
|
||||
try:
|
||||
if path == "/" and method == "GET":
|
||||
return await self._handle_status()
|
||||
elif path == "/process" and method == "POST":
|
||||
return await self._handle_process(request)
|
||||
elif path == "/ask" and method == "POST":
|
||||
return await self._handle_ask(request)
|
||||
elif path == "/summary" and method == "GET":
|
||||
return await self._handle_summary(request)
|
||||
elif path == "/facts" and method == "GET":
|
||||
return await self._handle_facts(request)
|
||||
elif path == "/docs" and method == "GET":
|
||||
return await self._handle_list_docs()
|
||||
else:
|
||||
return {
|
||||
"error": "Not found",
|
||||
"available_endpoints": {
|
||||
"GET /": "Service status",
|
||||
"POST /process": "Process document (body: {\"source\": \"url_or_path\"})",
|
||||
"POST /ask": "Ask question (body: {\"question\": \"your_question\", \"source\": \"optional_doc_id\"})",
|
||||
"GET /summary?source=doc_id": "Get document summary",
|
||||
"GET /facts?source=doc_id": "Get document facts",
|
||||
"GET /docs": "List processed documents"
|
||||
}
|
||||
}
|
||||
except Exception as e:
|
||||
return {"error": str(e)}
|
||||
|
||||
async def _handle_status(self) -> Dict:
|
||||
"""Return service status"""
|
||||
return {
|
||||
"status": "healthy",
|
||||
"service": "LangChain + Llama Stack Document Processing",
|
||||
"documents_processed": len(self.processed_docs),
|
||||
"available_models": [m.identifier for m in self.client.models.list()],
|
||||
"endpoints": ["/", "/process", "/ask", "/summary", "/facts", "/docs"]
|
||||
}
|
||||
|
||||
async def _handle_process(self, request: Request) -> Dict:
|
||||
"""Process a document from URL or file path"""
|
||||
body = await request.json()
|
||||
source = body.get("source")
|
||||
|
||||
if not source:
|
||||
return {"error": "Missing 'source' in request body"}
|
||||
|
||||
try:
|
||||
# Load document
|
||||
document = load_document(source)
|
||||
|
||||
# Generate summary and facts
|
||||
summary = self.summary_chain.invoke({"document": document})["text"]
|
||||
facts = self.facts_chain.invoke({"document": document})["text"]
|
||||
|
||||
# Store processed document
|
||||
self.processed_docs[source] = {
|
||||
"document": document,
|
||||
"summary": summary,
|
||||
"facts": facts,
|
||||
"processed_at": time.time()
|
||||
}
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"source": source,
|
||||
"document_length": len(document),
|
||||
"summary_preview": summary[:200] + "..." if len(summary) > 200 else summary,
|
||||
"facts_preview": facts[:300] + "..." if len(facts) > 300 else facts
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
return {"error": f"Failed to process document: {str(e)}"}
|
||||
|
||||
async def _handle_ask(self, request: Request) -> Dict:
|
||||
"""Answer questions about processed documents"""
|
||||
body = await request.json()
|
||||
question = body.get("question")
|
||||
source = body.get("source")
|
||||
|
||||
if not question:
|
||||
return {"error": "Missing 'question' in request body"}
|
||||
|
||||
if not self.processed_docs:
|
||||
return {"error": "No documents processed yet. Use /process endpoint first."}
|
||||
|
||||
try:
|
||||
# Select document
|
||||
if source and source in self.processed_docs:
|
||||
doc_data = self.processed_docs[source]
|
||||
else:
|
||||
# Use the most recent document
|
||||
doc_data = list(self.processed_docs.values())[-1]
|
||||
source = list(self.processed_docs.keys())[-1]
|
||||
|
||||
# Generate answer
|
||||
answer = self.qa_chain.invoke({
|
||||
"document": doc_data["document"],
|
||||
"question": question
|
||||
})["text"]
|
||||
|
||||
return {
|
||||
"question": question,
|
||||
"answer": answer,
|
||||
"source": source
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
return {"error": f"Failed to answer question: {str(e)}"}
|
||||
|
||||
async def _handle_summary(self, request: Request) -> Dict:
|
||||
"""Get summary of a processed document"""
|
||||
source = request.query_params.get("source")
|
||||
|
||||
if not self.processed_docs:
|
||||
return {"error": "No documents processed yet"}
|
||||
|
||||
if source and source in self.processed_docs:
|
||||
doc_data = self.processed_docs[source]
|
||||
else:
|
||||
# Use the most recent document
|
||||
doc_data = list(self.processed_docs.values())[-1]
|
||||
source = list(self.processed_docs.keys())[-1]
|
||||
|
||||
return {
|
||||
"source": source,
|
||||
"summary": doc_data["summary"]
|
||||
}
|
||||
|
||||
async def _handle_facts(self, request: Request) -> Dict:
|
||||
"""Get facts from a processed document"""
|
||||
source = request.query_params.get("source")
|
||||
|
||||
if not self.processed_docs:
|
||||
return {"error": "No documents processed yet"}
|
||||
|
||||
if source and source in self.processed_docs:
|
||||
doc_data = self.processed_docs[source]
|
||||
else:
|
||||
# Use the most recent document
|
||||
doc_data = list(self.processed_docs.values())[-1]
|
||||
source = list(self.processed_docs.keys())[-1]
|
||||
|
||||
return {
|
||||
"source": source,
|
||||
"facts": doc_data["facts"]
|
||||
}
|
||||
|
||||
async def _handle_list_docs(self) -> Dict:
|
||||
"""List all processed documents"""
|
||||
docs_info = []
|
||||
for source, data in self.processed_docs.items():
|
||||
docs_info.append({
|
||||
"source": source,
|
||||
"document_length": len(data["document"]),
|
||||
"processed_at": data["processed_at"],
|
||||
"summary_preview": data["summary"][:100] + "..." if len(data["summary"]) > 100 else data["summary"]
|
||||
})
|
||||
|
||||
return {
|
||||
"processed_documents": docs_info,
|
||||
"total_count": len(self.processed_docs)
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function to start the Ray Serve application"""
|
||||
|
||||
# Create the application
|
||||
app = LangChainLlamaStackService.bind()
|
||||
|
||||
# Deploy the application locally
|
||||
print("🚀 Starting LangChain + Llama Stack Ray Serve application...")
|
||||
serve.run(app, route_prefix="/")
|
||||
|
||||
# Wait for service to initialize
|
||||
print("⏳ Waiting for service to initialize...")
|
||||
time.sleep(5)
|
||||
|
||||
# Test the service
|
||||
try:
|
||||
response = requests.get("http://localhost:8000/")
|
||||
print(f"✅ Service response: {response.json()}")
|
||||
print("🎉 Service is running successfully!")
|
||||
except Exception as e:
|
||||
print(f"⚠️ Could not test service: {e}")
|
||||
print(" Service might still be starting up...")
|
||||
|
||||
# Show service information
|
||||
print("\n" + "="*60)
|
||||
print("🌐 LangChain + Llama Stack Service is running on:")
|
||||
print(" http://localhost:8000/")
|
||||
print("="*60)
|
||||
print("📋 Available endpoints:")
|
||||
print(" GET / - Service status")
|
||||
print(" POST /process - Process document")
|
||||
print(" POST /ask - Ask questions")
|
||||
print(" GET /summary - Get document summary")
|
||||
print(" GET /facts - Get document facts")
|
||||
print(" GET /docs - List processed documents")
|
||||
print("="*60)
|
||||
print("🧪 Example requests:")
|
||||
print(" # Process a document:")
|
||||
print(" curl -X POST http://localhost:8000/process \\")
|
||||
print(" -H 'Content-Type: application/json' \\")
|
||||
print(" -d '{\"source\": \"https://example.com/article\"}'")
|
||||
print("")
|
||||
print(" # Ask a question:")
|
||||
print(" curl -X POST http://localhost:8000/ask \\")
|
||||
print(" -H 'Content-Type: application/json' \\")
|
||||
print(" -d '{\"question\": \"What is the main topic?\"}'")
|
||||
print("")
|
||||
print(" # Get summary:")
|
||||
print(" curl http://localhost:8000/summary")
|
||||
print("="*60)
|
||||
print("🛑 Press Ctrl+C to stop the service...")
|
||||
|
||||
try:
|
||||
# Keep the service alive
|
||||
while True:
|
||||
time.sleep(1)
|
||||
except KeyboardInterrupt:
|
||||
print("\n🛑 Stopping service...")
|
||||
serve.shutdown()
|
||||
print("👋 Service stopped successfully!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# import requests
|
||||
|
||||
# # Step 1: First, process/load the document
|
||||
# process_response = requests.post(
|
||||
# "http://localhost:8000/process",
|
||||
# json={"source": "https://en.wikipedia.org/wiki/What%27s_Happening!!"}
|
||||
# )
|
||||
# print("Processing result:", process_response.json())
|
||||
|
||||
# # Step 2: Then get the facts
|
||||
# facts_response = requests.get("http://localhost:8000/facts")
|
||||
# print("Facts:", facts_response.json())
|
||||
|
||||
# # Or get facts for specific document
|
||||
# facts_response = requests.get(
|
||||
# "http://localhost:8000/facts",
|
||||
# params={"source": "https://en.wikipedia.org/wiki/What%27s_Happening!!"}
|
||||
# )
|
||||
# print("Facts for specific doc:", facts_response.json())
|
Loading…
Add table
Add a link
Reference in a new issue