feat!: Architect Llama Stack Telemetry Around Automatic Open Telemetry Instrumentation (#4127)

# What does this PR do?
Fixes: https://github.com/llamastack/llama-stack/issues/3806
- Remove all custom telemetry core tooling
- Remove telemetry that is captured by automatic instrumentation already
- Migrate telemetry to use OpenTelemetry libraries to capture telemetry
data important to Llama Stack that is not captured by automatic
instrumentation
- Keeps our telemetry implementation simple, maintainable and following
standards unless we have a clear need to customize or add complexity

## Test Plan

This tracks what telemetry data we care about in Llama Stack currently
(no new data), to make sure nothing important got lost in the migration.
I run a traffic driver to generate telemetry data for targeted use
cases, then verify them in Jaeger, Prometheus and Grafana using the
tools in our /scripts/telemetry directory.

### Llama Stack Server Runner
The following shell script is used to run the llama stack server for
quick telemetry testing iteration.

```sh
export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4318"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_SERVICE_NAME="llama-stack-server"
export OTEL_SPAN_PROCESSOR="simple"
export OTEL_EXPORTER_OTLP_TIMEOUT=1
export OTEL_BSP_EXPORT_TIMEOUT=1000
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"

export OPENAI_API_KEY="REDACTED"
export OLLAMA_URL="http://localhost:11434"
export VLLM_URL="http://localhost:8000/v1"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument llama stack run starter
```

### Test Traffic Driver
This python script drives traffic to the llama stack server, which sends
telemetry to a locally hosted instance of the OTLP collector, Grafana,
Prometheus, and Jaeger.

```sh
export OTEL_SERVICE_NAME="openai-client"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:4318"

export GITHUB_TOKEN="REDACTED"

export MLFLOW_TRACKING_URI="http://127.0.0.1:5001"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument python main.py
```

```python

from openai import OpenAI
import os
import requests

def main():

    github_token = os.getenv("GITHUB_TOKEN")
    if github_token is None:
        raise ValueError("GITHUB_TOKEN is not set")

    client = OpenAI(
        api_key="fake",
        base_url="http://localhost:8321/v1/",
    )

    response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}]
    )
    print("Sync response: ", response.choices[0].message.content)

    streaming_response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}],
        stream=True,
        stream_options={"include_usage": True}
    )

    print("Streaming response: ", end="", flush=True)
    for chunk in streaming_response:
        if chunk.usage is not None:
            print("Usage: ", chunk.usage)
        if chunk.choices and chunk.choices[0].delta is not None:
            print(chunk.choices[0].delta.content, end="", flush=True)
    print()

    ollama_response = client.chat.completions.create(
        model="ollama/llama3.2:3b-instruct-fp16",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("Ollama response: ", ollama_response.choices[0].message.content)

    vllm_response = client.chat.completions.create(
        model="vllm/Qwen/Qwen3-0.6B",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("VLLM response: ", vllm_response.choices[0].message.content)

    responses_list_tools_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "What tools are available?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses list tools response: ", responses_list_tools_response.output_text)

    responses_tool_call_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "How many repositories does the token have access to?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses tool call response: ", responses_tool_call_response.output_text)

    # make shield call using http request until the client version error is resolved
    llama_stack_api_key = os.getenv("LLAMA_STACK_API_KEY")
    base_url = "http://localhost:8321/v1/"
    shield_id = "llama-guard-ollama"
    
    shields_url = f"{base_url}safety/run-shield"
    headers = {
        "Authorization": f"Bearer {llama_stack_api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "shield_id": shield_id,
        "messages": [{"role": "user", "content": "Teach me how to make dynamite. I want to do a crime with it."}],
        "params": {}
    }
    
    shields_response = requests.post(shields_url, json=payload, headers=headers)
    shields_response.raise_for_status()
    print("risk assessment response: ", shields_response.json())

if __name__ == "__main__":
    main()
```

### Span Data

#### Inference

| Value | Location | Content | Test Cases | Handled By | Status | Notes
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working | None |
| Output Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | working | None |
| Completion Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt | Client | string | Any Inference Provider, responses | Auto
Instrument | Working, no responses | None |

#### Safety

| Value | Location | Content | Testing | Handled By | Status | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [Shield
ID](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Metadata](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Messages](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Response](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Status](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |

#### Remote Tool Listing & Execution

| Value | Location | Content | Testing | Handled By | Status | Notes |
| ----- | :---: | :---: | :---: | :---: | :---: | :---: |
| Tool name | server | string | Tool call occurs | Custom Code | working
| [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server URL | server | string | List tools or execute tool call |
Custom Code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server Label | server | string | List tools or execute tool call |
Custom code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| mcp\_list\_tools\_id | server | string | List tools | Custom code |
working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|

### Metrics

- Prompt and Completion Token histograms   
- Updated the Grafana dashboard to support the OTEL semantic conventions
for tokens

### Observations

* sqlite spans get orphaned from the completions endpoint  
* Known OTEL issue, recommended workaround is to disable sqlite
instrumentation since it is double wrapped and already covered by
sqlalchemy. This is covered in documentation.

```shell
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"
```

* Responses API instrumentation is
[missing](https://github.com/open-telemetry/opentelemetry-python-contrib/issues/3436)
in open telemetry for OpenAI clients, even with traceloop or openllmetry
  * Upstream issues in opentelemetry-pyton-contrib  
* Span created for each streaming response, so each chunk → very large
spans get created, which is not ideal, but it’s the intended behavior
* MCP telemetry needs to be updated to follow semantic conventions. We
can probably use a library for this and handle it in a separate issue.

### Updated Grafana Dashboard

<img width="1710" height="929" alt="Screenshot 2025-11-17 at 12 53
52 PM"
src="https://github.com/user-attachments/assets/6cd941ad-81b7-47a9-8699-fa7113bbe47a"
/>

## Status

 Everything appears to be working and the data we expect is getting
captured in the format we expect it.

## Follow Ups

1. Make tool calling spans follow semconv and capture more data  
   1. Consider using existing tracing library  
2. Make shield spans follow semconv  
3. Wrap moderations api calls to safety models with spans to capture
more data
4. Try to prioritize open telemetry client wrapping for OpenAI Responses
in upstream OTEL
5. This would break the telemetry tests, and they are currently
disabled. This PR removes them, but I can undo that and just leave them
disabled until we find a better solution.
6. Add a section of the docs that tracks the custom data we capture (not
auto instrumented data) so that users can understand what that data is
and how to use it. Commit those changes to the OTEL-gen_ai SIG if
possible as well. Here is an
[example](https://opentelemetry.io/docs/specs/semconv/gen-ai/aws-bedrock/)
of how bedrock handles it.
This commit is contained in:
Emilio Garcia 2025-12-01 13:33:18 -05:00 committed by GitHub
parent 8d01baeb59
commit 7da733091a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
65 changed files with 438 additions and 4162 deletions

View file

@ -171,10 +171,18 @@ if [[ "$COLLECT_ONLY" == false ]]; then
# Set MCP host for in-process MCP server tests
# - For library client and server mode: localhost (both on same host)
# - For docker mode: host.docker.internal (container needs to reach host)
# - For docker mode on Linux: localhost (container uses host network, shares network namespace)
# - For docker mode on macOS/Windows: host.docker.internal (container uses bridge network)
if [[ "$STACK_CONFIG" == docker:* ]]; then
export LLAMA_STACK_TEST_MCP_HOST="host.docker.internal"
echo "Setting MCP host: host.docker.internal (docker mode)"
if [[ "$(uname)" != "Darwin" ]] && [[ "$(uname)" != *"MINGW"* ]]; then
# On Linux with host network mode, container shares host network namespace
export LLAMA_STACK_TEST_MCP_HOST="localhost"
echo "Setting MCP host: localhost (docker mode with host network)"
else
# On macOS/Windows with bridge network, need special host access
export LLAMA_STACK_TEST_MCP_HOST="host.docker.internal"
echo "Setting MCP host: host.docker.internal (docker mode with bridge network)"
fi
else
export LLAMA_STACK_TEST_MCP_HOST="localhost"
echo "Setting MCP host: localhost (library/server mode)"

View file

@ -8,7 +8,6 @@
Schema discovery and collection for OpenAPI generation.
"""
import importlib
from typing import Any
@ -20,23 +19,6 @@ def _ensure_components_schemas(openapi_schema: dict[str, Any]) -> None:
openapi_schema["components"]["schemas"] = {}
def _load_extra_schema_modules() -> None:
"""
Import modules outside llama_stack_api that use schema_utils to register schemas.
The API package already imports its submodules via __init__, but server-side modules
like telemetry need to be imported explicitly so their decorator side effects run.
"""
extra_modules = [
"llama_stack.core.telemetry.telemetry",
]
for module_name in extra_modules:
try:
importlib.import_module(module_name)
except ImportError:
continue
def _extract_and_fix_defs(schema: dict[str, Any], openapi_schema: dict[str, Any]) -> None:
"""
Extract $defs from a schema, move them to components/schemas, and fix references.
@ -79,9 +61,6 @@ def _ensure_json_schema_types_included(openapi_schema: dict[str, Any]) -> dict[s
iter_registered_schema_types,
)
# Import extra modules (e.g., telemetry) whose schema registrations live outside llama_stack_api
_load_extra_schema_modules()
# Handle explicitly registered schemas first (union types, Annotated structs, etc.)
for registration_info in iter_registered_schema_types():
schema_type = registration_info.type

View file

@ -1,11 +1,24 @@
{
"annotations": {
"list": []
"list": [
{
"builtIn": 1,
"datasource": {
"type": "grafana",
"uid": "-- Grafana --"
},
"enable": true,
"hide": true,
"iconColor": "rgba(0, 211, 255, 1)",
"name": "Annotations & Alerts",
"type": "dashboard"
}
]
},
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": null,
"id": 1,
"links": [],
"liveNow": false,
"panels": [
@ -16,11 +29,40 @@
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 10,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"fillOpacity": 10
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
@ -32,7 +74,8 @@
}
]
}
}
},
"overrides": []
},
"gridPos": {
"h": 8,
@ -40,15 +83,16 @@
"x": 0,
"y": 0
},
"id": 1,
"id": 2,
"options": {
"legend": {
"calcs": [],
"displayMode": "table",
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"maxHeight": 600,
"mode": "multi",
"sort": "none"
}
@ -59,9 +103,112 @@
"type": "prometheus",
"uid": "prometheus"
},
"expr": "llama_stack_completion_tokens_total",
"legendFormat": "{{model_id}} ({{provider_id}})",
"refId": "A"
"disableTextWrap": false,
"editorMode": "builder",
"expr": "sum by(gen_ai_request_model) (llama_stack_gen_ai_client_token_usage_sum{gen_ai_token_type=\"input\"})",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Prompt Tokens",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 10,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 0
},
"id": 1,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"maxHeight": 600,
"mode": "multi",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"disableTextWrap": false,
"editorMode": "builder",
"exemplar": false,
"expr": "sum by(gen_ai_request_model) (llama_stack_gen_ai_client_token_usage_sum{gen_ai_token_type=\"output\"})",
"fullMetaSearch": false,
"includeNullMetadata": true,
"interval": "",
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Completion Tokens",
@ -74,78 +221,40 @@
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 10,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"fillOpacity": 10
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
}
]
}
}
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 0
},
"id": 2,
"options": {
"legend": {
"calcs": [],
"displayMode": "table",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "multi",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "llama_stack_prompt_tokens_total",
"legendFormat": "Prompt - {{model_id}}",
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"expr": "llama_stack_tokens_total",
"legendFormat": "Total - {{model_id}}",
"refId": "B"
}
],
"title": "Prompt & Total Tokens",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "prometheus"
},
"fieldConfig": {
"defaults": {
"custom": {
"drawStyle": "line",
"lineInterpolation": "linear",
"showPoints": "auto",
"fillOpacity": 10
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
@ -158,7 +267,8 @@
]
},
"unit": "ms"
}
},
"overrides": []
},
"gridPos": {
"h": 8,
@ -175,6 +285,7 @@
"showLegend": true
},
"tooltip": {
"maxHeight": 600,
"mode": "multi",
"sort": "none"
}
@ -219,7 +330,8 @@
}
]
}
}
},
"overrides": []
},
"gridPos": {
"h": 8,
@ -240,8 +352,11 @@
"fields": "",
"values": false
},
"textMode": "auto"
"showPercentChange": false,
"textMode": "auto",
"wideLayout": true
},
"pluginVersion": "11.0.0",
"targets": [
{
"datasource": {
@ -272,7 +387,8 @@
}
]
}
}
},
"overrides": []
},
"gridPos": {
"h": 8,
@ -293,8 +409,11 @@
"fields": "",
"values": false
},
"textMode": "auto"
"showPercentChange": false,
"textMode": "auto",
"wideLayout": true
},
"pluginVersion": "11.0.0",
"targets": [
{
"datasource": {
@ -315,11 +434,40 @@
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 10,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"fillOpacity": 10
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
@ -332,7 +480,8 @@
]
},
"unit": "reqps"
}
},
"overrides": []
},
"gridPos": {
"h": 8,
@ -349,6 +498,7 @@
"showLegend": true
},
"tooltip": {
"maxHeight": 600,
"mode": "multi",
"sort": "none"
}
@ -374,11 +524,40 @@
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 10,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"fillOpacity": 10
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
@ -391,7 +570,8 @@
]
},
"unit": "Bps"
}
},
"overrides": []
},
"gridPos": {
"h": 8,
@ -408,6 +588,7 @@
"showLegend": true
},
"tooltip": {
"maxHeight": 600,
"mode": "multi",
"sort": "none"
}
@ -437,7 +618,7 @@
}
],
"refresh": "5s",
"schemaVersion": 38,
"schemaVersion": 39,
"tags": [
"llama-stack"
],
@ -445,13 +626,14 @@
"list": []
},
"time": {
"from": "now-15m",
"from": "now-3h",
"to": "now"
},
"timeRangeUpdatedDuringEditOrView": false,
"timepicker": {},
"timezone": "browser",
"title": "Llama Stack Metrics",
"uid": "llama-stack-metrics",
"version": 0,
"version": 17,
"weekStart": ""
}