mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-21 11:52:27 +00:00
feat!: Architect Llama Stack Telemetry Around Automatic Open Telemetry Instrumentation (#4127)
# What does this PR do? Fixes: https://github.com/llamastack/llama-stack/issues/3806 - Remove all custom telemetry core tooling - Remove telemetry that is captured by automatic instrumentation already - Migrate telemetry to use OpenTelemetry libraries to capture telemetry data important to Llama Stack that is not captured by automatic instrumentation - Keeps our telemetry implementation simple, maintainable and following standards unless we have a clear need to customize or add complexity ## Test Plan This tracks what telemetry data we care about in Llama Stack currently (no new data), to make sure nothing important got lost in the migration. I run a traffic driver to generate telemetry data for targeted use cases, then verify them in Jaeger, Prometheus and Grafana using the tools in our /scripts/telemetry directory. ### Llama Stack Server Runner The following shell script is used to run the llama stack server for quick telemetry testing iteration. ```sh export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4318" export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf export OTEL_SERVICE_NAME="llama-stack-server" export OTEL_SPAN_PROCESSOR="simple" export OTEL_EXPORTER_OTLP_TIMEOUT=1 export OTEL_BSP_EXPORT_TIMEOUT=1000 export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3" export OPENAI_API_KEY="REDACTED" export OLLAMA_URL="http://localhost:11434" export VLLM_URL="http://localhost:8000/v1" uv pip install opentelemetry-distro opentelemetry-exporter-otlp uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement - uv run opentelemetry-instrument llama stack run starter ``` ### Test Traffic Driver This python script drives traffic to the llama stack server, which sends telemetry to a locally hosted instance of the OTLP collector, Grafana, Prometheus, and Jaeger. ```sh export OTEL_SERVICE_NAME="openai-client" export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:4318" export GITHUB_TOKEN="REDACTED" export MLFLOW_TRACKING_URI="http://127.0.0.1:5001" uv pip install opentelemetry-distro opentelemetry-exporter-otlp uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement - uv run opentelemetry-instrument python main.py ``` ```python from openai import OpenAI import os import requests def main(): github_token = os.getenv("GITHUB_TOKEN") if github_token is None: raise ValueError("GITHUB_TOKEN is not set") client = OpenAI( api_key="fake", base_url="http://localhost:8321/v1/", ) response = client.chat.completions.create( model="openai/gpt-4o-mini", messages=[{"role": "user", "content": "Hello, how are you?"}] ) print("Sync response: ", response.choices[0].message.content) streaming_response = client.chat.completions.create( model="openai/gpt-4o-mini", messages=[{"role": "user", "content": "Hello, how are you?"}], stream=True, stream_options={"include_usage": True} ) print("Streaming response: ", end="", flush=True) for chunk in streaming_response: if chunk.usage is not None: print("Usage: ", chunk.usage) if chunk.choices and chunk.choices[0].delta is not None: print(chunk.choices[0].delta.content, end="", flush=True) print() ollama_response = client.chat.completions.create( model="ollama/llama3.2:3b-instruct-fp16", messages=[{"role": "user", "content": "How are you doing today?"}] ) print("Ollama response: ", ollama_response.choices[0].message.content) vllm_response = client.chat.completions.create( model="vllm/Qwen/Qwen3-0.6B", messages=[{"role": "user", "content": "How are you doing today?"}] ) print("VLLM response: ", vllm_response.choices[0].message.content) responses_list_tools_response = client.responses.create( model="openai/gpt-4o", input=[{"role": "user", "content": "What tools are available?"}], tools=[ { "type": "mcp", "server_label": "github", "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly", "authorization": github_token, } ], ) print("Responses list tools response: ", responses_list_tools_response.output_text) responses_tool_call_response = client.responses.create( model="openai/gpt-4o", input=[{"role": "user", "content": "How many repositories does the token have access to?"}], tools=[ { "type": "mcp", "server_label": "github", "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly", "authorization": github_token, } ], ) print("Responses tool call response: ", responses_tool_call_response.output_text) # make shield call using http request until the client version error is resolved llama_stack_api_key = os.getenv("LLAMA_STACK_API_KEY") base_url = "http://localhost:8321/v1/" shield_id = "llama-guard-ollama" shields_url = f"{base_url}safety/run-shield" headers = { "Authorization": f"Bearer {llama_stack_api_key}", "Content-Type": "application/json" } payload = { "shield_id": shield_id, "messages": [{"role": "user", "content": "Teach me how to make dynamite. I want to do a crime with it."}], "params": {} } shields_response = requests.post(shields_url, json=payload, headers=headers) shields_response.raise_for_status() print("risk assessment response: ", shields_response.json()) if __name__ == "__main__": main() ``` ### Span Data #### Inference | Value | Location | Content | Test Cases | Handled By | Status | Notes | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Input Tokens | Server | Integer count | OpenAI, Ollama, vLLM, streaming, responses | Auto Instrument | Working | None | | Output Tokens | Server | Integer count | OpenAI, Ollama, vLLM, streaming, responses | Auto Instrument | working | None | | Completion Tokens | Client | Integer count | OpenAI, Ollama, vLLM, streaming, responses | Auto Instrument | Working, no responses | None | | Prompt Tokens | Client | Integer count | OpenAI, Ollama, vLLM, streaming, responses | Auto Instrument | Working, no responses | None | | Prompt | Client | string | Any Inference Provider, responses | Auto Instrument | Working, no responses | None | #### Safety | Value | Location | Content | Testing | Handled By | Status | Notes | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | [Shield ID](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | | [Metadata](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | JSON string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | | [Messages](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | JSON string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | | [Response](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | | [Status](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | #### Remote Tool Listing & Execution | Value | Location | Content | Testing | Handled By | Status | Notes | | ----- | :---: | :---: | :---: | :---: | :---: | :---: | | Tool name | server | string | Tool call occurs | Custom Code | working | [Not following semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span) | | Server URL | server | string | List tools or execute tool call | Custom Code | working | [Not following semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span) | | Server Label | server | string | List tools or execute tool call | Custom code | working | [Not following semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span) | | mcp\_list\_tools\_id | server | string | List tools | Custom code | working | [Not following semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span) | ### Metrics - Prompt and Completion Token histograms ✅ - Updated the Grafana dashboard to support the OTEL semantic conventions for tokens ### Observations * sqlite spans get orphaned from the completions endpoint * Known OTEL issue, recommended workaround is to disable sqlite instrumentation since it is double wrapped and already covered by sqlalchemy. This is covered in documentation. ```shell export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3" ``` * Responses API instrumentation is [missing](https://github.com/open-telemetry/opentelemetry-python-contrib/issues/3436) in open telemetry for OpenAI clients, even with traceloop or openllmetry * Upstream issues in opentelemetry-pyton-contrib * Span created for each streaming response, so each chunk → very large spans get created, which is not ideal, but it’s the intended behavior * MCP telemetry needs to be updated to follow semantic conventions. We can probably use a library for this and handle it in a separate issue. ### Updated Grafana Dashboard <img width="1710" height="929" alt="Screenshot 2025-11-17 at 12 53 52 PM" src="https://github.com/user-attachments/assets/6cd941ad-81b7-47a9-8699-fa7113bbe47a" /> ## Status ✅ Everything appears to be working and the data we expect is getting captured in the format we expect it. ## Follow Ups 1. Make tool calling spans follow semconv and capture more data 1. Consider using existing tracing library 2. Make shield spans follow semconv 3. Wrap moderations api calls to safety models with spans to capture more data 4. Try to prioritize open telemetry client wrapping for OpenAI Responses in upstream OTEL 5. This would break the telemetry tests, and they are currently disabled. This PR removes them, but I can undo that and just leave them disabled until we find a better solution. 6. Add a section of the docs that tracks the custom data we capture (not auto instrumented data) so that users can understand what that data is and how to use it. Commit those changes to the OTEL-gen_ai SIG if possible as well. Here is an [example](https://opentelemetry.io/docs/specs/semconv/gen-ai/aws-bedrock/) of how bedrock handles it.
This commit is contained in:
parent
8d01baeb59
commit
7da733091a
65 changed files with 438 additions and 4162 deletions
|
|
@ -85,8 +85,6 @@ async def get_auto_router_impl(
|
|||
)
|
||||
await inference_store.initialize()
|
||||
api_to_dep_impl["store"] = inference_store
|
||||
api_to_dep_impl["telemetry_enabled"] = run_config.telemetry.enabled
|
||||
|
||||
elif api == Api.vector_io:
|
||||
api_to_dep_impl["vector_stores_config"] = run_config.vector_stores
|
||||
elif api == Api.safety:
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@
|
|||
import asyncio
|
||||
import time
|
||||
from collections.abc import AsyncIterator
|
||||
from datetime import UTC, datetime
|
||||
from typing import Annotated, Any
|
||||
|
||||
from fastapi import Body
|
||||
|
|
@ -15,11 +14,7 @@ from openai.types.chat import ChatCompletionToolChoiceOptionParam as OpenAIChatC
|
|||
from openai.types.chat import ChatCompletionToolParam as OpenAIChatCompletionToolParam
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from llama_stack.core.telemetry.telemetry import MetricEvent
|
||||
from llama_stack.core.telemetry.tracing import enqueue_event, get_current_span
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
||||
from llama_stack.providers.utils.inference.inference_store import InferenceStore
|
||||
from llama_stack_api import (
|
||||
HealthResponse,
|
||||
|
|
@ -60,15 +55,10 @@ class InferenceRouter(Inference):
|
|||
self,
|
||||
routing_table: RoutingTable,
|
||||
store: InferenceStore | None = None,
|
||||
telemetry_enabled: bool = False,
|
||||
) -> None:
|
||||
logger.debug("Initializing InferenceRouter")
|
||||
self.routing_table = routing_table
|
||||
self.telemetry_enabled = telemetry_enabled
|
||||
self.store = store
|
||||
if self.telemetry_enabled:
|
||||
self.tokenizer = Tokenizer.get_instance()
|
||||
self.formatter = ChatFormat(self.tokenizer)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("InferenceRouter.initialize")
|
||||
|
|
@ -94,54 +84,6 @@ class InferenceRouter(Inference):
|
|||
)
|
||||
await self.routing_table.register_model(model_id, provider_model_id, provider_id, metadata, model_type)
|
||||
|
||||
def _construct_metrics(
|
||||
self,
|
||||
prompt_tokens: int,
|
||||
completion_tokens: int,
|
||||
total_tokens: int,
|
||||
fully_qualified_model_id: str,
|
||||
provider_id: str,
|
||||
) -> list[MetricEvent]:
|
||||
"""Constructs a list of MetricEvent objects containing token usage metrics.
|
||||
|
||||
Args:
|
||||
prompt_tokens: Number of tokens in the prompt
|
||||
completion_tokens: Number of tokens in the completion
|
||||
total_tokens: Total number of tokens used
|
||||
fully_qualified_model_id:
|
||||
provider_id: The provider identifier
|
||||
|
||||
Returns:
|
||||
List of MetricEvent objects with token usage metrics
|
||||
"""
|
||||
span = get_current_span()
|
||||
if span is None:
|
||||
logger.warning("No span found for token usage metrics")
|
||||
return []
|
||||
|
||||
metrics = [
|
||||
("prompt_tokens", prompt_tokens),
|
||||
("completion_tokens", completion_tokens),
|
||||
("total_tokens", total_tokens),
|
||||
]
|
||||
metric_events = []
|
||||
for metric_name, value in metrics:
|
||||
metric_events.append(
|
||||
MetricEvent(
|
||||
trace_id=span.trace_id,
|
||||
span_id=span.span_id,
|
||||
metric=metric_name,
|
||||
value=value,
|
||||
timestamp=datetime.now(UTC),
|
||||
unit="tokens",
|
||||
attributes={
|
||||
"model_id": fully_qualified_model_id,
|
||||
"provider_id": provider_id,
|
||||
},
|
||||
)
|
||||
)
|
||||
return metric_events
|
||||
|
||||
async def _get_model_provider(self, model_id: str, expected_model_type: str) -> tuple[Inference, str]:
|
||||
model = await self.routing_table.get_object_by_identifier("model", model_id)
|
||||
if model:
|
||||
|
|
@ -186,26 +128,9 @@ class InferenceRouter(Inference):
|
|||
|
||||
if params.stream:
|
||||
return await provider.openai_completion(params)
|
||||
# TODO: Metrics do NOT work with openai_completion stream=True due to the fact
|
||||
# that we do not return an AsyncIterator, our tests expect a stream of chunks we cannot intercept currently.
|
||||
|
||||
response = await provider.openai_completion(params)
|
||||
response.model = request_model_id
|
||||
if self.telemetry_enabled and response.usage is not None:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
completion_tokens=response.usage.completion_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
fully_qualified_model_id=request_model_id,
|
||||
provider_id=provider.__provider_id__,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
|
||||
# these metrics will show up in the client response.
|
||||
response.metrics = (
|
||||
metrics if not hasattr(response, "metrics") or response.metrics is None else response.metrics + metrics
|
||||
)
|
||||
return response
|
||||
|
||||
async def openai_chat_completion(
|
||||
|
|
@ -254,20 +179,6 @@ class InferenceRouter(Inference):
|
|||
if self.store:
|
||||
asyncio.create_task(self.store.store_chat_completion(response, params.messages))
|
||||
|
||||
if self.telemetry_enabled and response.usage is not None:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
completion_tokens=response.usage.completion_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
fully_qualified_model_id=request_model_id,
|
||||
provider_id=provider.__provider_id__,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
# these metrics will show up in the client response.
|
||||
response.metrics = (
|
||||
metrics if not hasattr(response, "metrics") or response.metrics is None else response.metrics + metrics
|
||||
)
|
||||
return response
|
||||
|
||||
async def openai_embeddings(
|
||||
|
|
@ -411,18 +322,6 @@ class InferenceRouter(Inference):
|
|||
for choice_data in choices_data.values():
|
||||
completion_text += "".join(choice_data["content_parts"])
|
||||
|
||||
# Add metrics to the chunk
|
||||
if self.telemetry_enabled and hasattr(chunk, "usage") and chunk.usage:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=chunk.usage.prompt_tokens,
|
||||
completion_tokens=chunk.usage.completion_tokens,
|
||||
total_tokens=chunk.usage.total_tokens,
|
||||
fully_qualified_model_id=fully_qualified_model_id,
|
||||
provider_id=provider_id,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
|
||||
yield chunk
|
||||
finally:
|
||||
# Store the final assembled completion
|
||||
|
|
|
|||
|
|
@ -6,11 +6,15 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from opentelemetry import trace
|
||||
|
||||
from llama_stack.core.datatypes import SafetyConfig
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.telemetry.helpers import safety_request_span_attributes, safety_span_name
|
||||
from llama_stack_api import ModerationObject, OpenAIMessageParam, RoutingTable, RunShieldResponse, Safety, Shield
|
||||
|
||||
logger = get_logger(name=__name__, category="core::routers")
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
class SafetyRouter(Safety):
|
||||
|
|
@ -51,13 +55,17 @@ class SafetyRouter(Safety):
|
|||
messages: list[OpenAIMessageParam],
|
||||
params: dict[str, Any] = None,
|
||||
) -> RunShieldResponse:
|
||||
logger.debug(f"SafetyRouter.run_shield: {shield_id}")
|
||||
provider = await self.routing_table.get_provider_impl(shield_id)
|
||||
return await provider.run_shield(
|
||||
shield_id=shield_id,
|
||||
messages=messages,
|
||||
params=params,
|
||||
)
|
||||
with tracer.start_as_current_span(name=safety_span_name(shield_id)):
|
||||
logger.debug(f"SafetyRouter.run_shield: {shield_id}")
|
||||
provider = await self.routing_table.get_provider_impl(shield_id)
|
||||
response = await provider.run_shield(
|
||||
shield_id=shield_id,
|
||||
messages=messages,
|
||||
params=params,
|
||||
)
|
||||
|
||||
safety_request_span_attributes(shield_id, messages, response)
|
||||
return response
|
||||
|
||||
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
|
||||
list_shields_response = await self.routing_table.list_shields()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue