pre-commit fixes

This commit is contained in:
Chantal D Gama Rose 2025-03-14 13:56:05 -07:00
parent 967dd0aa08
commit 7e211f8553
314 changed files with 5574 additions and 11369 deletions

View file

@ -14,18 +14,16 @@ Agents are configured using the `AgentConfig` class, which includes:
- **Safety Shields**: Guardrails to ensure responsible AI behavior
```python
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.lib.agents.agent import Agent
# Configure an agent
agent_config = AgentConfig(
model="meta-llama/Llama-3-70b-chat",
instructions="You are a helpful assistant that can use tools to answer questions.",
toolgroups=["builtin::code_interpreter", "builtin::rag/knowledge_search"],
)
# Create the agent
agent = Agent(llama_stack_client, agent_config)
agent = Agent(
llama_stack_client,
model="meta-llama/Llama-3-70b-chat",
instructions="You are a helpful assistant that can use tools to answer questions.",
tools=["builtin::code_interpreter", "builtin::rag/knowledge_search"],
)
```
### 2. Sessions

View file

@ -70,18 +70,18 @@ Each step in this process can be monitored and controlled through configurations
from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from rich.pretty import pprint
# Replace host and port
client = LlamaStackClient(base_url=f"http://{HOST}:{PORT}")
agent_config = AgentConfig(
agent = Agent(
client,
# Check with `llama-stack-client models list`
model="Llama3.2-3B-Instruct",
instructions="You are a helpful assistant",
# Enable both RAG and tool usage
toolgroups=[
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": ["my_docs"]},
@ -98,8 +98,6 @@ agent_config = AgentConfig(
"max_tokens": 2048,
},
)
agent = Agent(client, agent_config)
session_id = agent.create_session("monitored_session")
# Stream the agent's execution steps

View file

@ -1,169 +1,127 @@
# Evals
# Evaluations
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing)
The Llama Stack provides a set of APIs in Llama Stack for supporting running evaluations of LLM applications.
- `/datasetio` + `/datasets` API
- `/scoring` + `/scoring_functions` API
- `/eval` + `/benchmarks` API
Llama Stack provides the building blocks needed to run benchmark and application evaluations. This guide will walk you through how to use these components to run open benchmark evaluations. Visit our [Evaluation Concepts](../concepts/evaluation_concepts.md) guide for more details on how evaluations work in Llama Stack, and our [Evaluation Reference](../references/evals_reference/index.md) guide for a comprehensive reference on the APIs.
### 1. Open Benchmark Model Evaluation
This first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark:
- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI): Benchmark designed to evaluate multimodal models.
- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions.
This guides walks you through the process of evaluating an LLM application built using Llama Stack. Checkout the [Evaluation Reference](../references/evals_reference/index.md) guide goes over the sets of APIs and developer experience flow of using Llama Stack to run evaluations for benchmark and application use cases. Checkout our Colab notebook on working examples with evaluations [here](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing).
#### 1.1 Running MMMU
- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API.
## Application Evaluation
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)
Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets.
In this example, we will show you how to:
1. Build an Agent with Llama Stack
2. Query the agent's sessions, turns, and steps
3. Evaluate the results.
##### Building a Search Agent
```python
import datasets
from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
ds = datasets.load_dataset(path="llamastack/mmmu", name="Agriculture", split="dev")
ds = ds.select_columns(["chat_completion_input", "input_query", "expected_answer"])
eval_rows = ds.to_pandas().to_dict(orient="records")
```
client = LlamaStackClient(base_url=f"http://{HOST}:{PORT}")
- Next, we will run evaluation on an model candidate, we will need to:
- Define a system prompt
- Define an EvalCandidate
- Run evaluate on the dataset
```python
SYSTEM_PROMPT_TEMPLATE = """
You are an expert in Agriculture whose job is to answer questions from the user using images.
First, reason about the correct answer.
Then write the answer in the following format where X is exactly one of A,B,C,D:
Answer: X
Make sure X is one of A,B,C,D.
If you are uncertain of the correct answer, guess the most likely one.
"""
system_message = {
"role": "system",
"content": SYSTEM_PROMPT_TEMPLATE,
}
client.benchmarks.register(
benchmark_id="meta-reference::mmmu",
dataset_id=f"mmmu-{subset}-{split}",
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
agent = Agent(
client,
model="meta-llama/Llama-3.3-70B-Instruct",
instructions="You are a helpful assistant. Use search tool to answer the questions. ",
tools=["builtin::websearch"],
)
user_prompts = [
"Which teams played in the NBA Western Conference Finals of 2024. Search the web for the answer.",
"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title. Search the web for the answer.",
"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.",
]
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::mmmu",
input_rows=eval_rows,
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"sampling_params": {
"strategy": {
"type": "greedy",
},
"max_tokens": 4096,
"repeat_penalty": 1.0,
},
"system_message": system_message,
},
},
)
```
session_id = agent.create_session("test-session")
#### 1.2. Running SimpleQA
- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API.
- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API.
for prompt in user_prompts:
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
```python
simpleqa_dataset_id = "huggingface::simpleqa"
_ = client.datasets.register(
dataset_id=simpleqa_dataset_id,
provider_id="huggingface",
url={"uri": "https://huggingface.co/datasets/llamastack/evals"},
metadata={
"path": "llamastack/evals",
"name": "evals__simpleqa",
"split": "train",
},
dataset_schema={
"input_query": {"type": "string"},
"expected_answer": {"type": "string"},
"chat_completion_input": {"type": "chat_completion_input"},
},
)
eval_rows = client.datasetio.get_rows_paginated(
dataset_id=simpleqa_dataset_id,
rows_in_page=5,
)
```
```python
client.benchmarks.register(
benchmark_id="meta-reference::simpleqa",
dataset_id=simpleqa_dataset_id,
scoring_functions=["llm-as-judge::405b-simpleqa"],
)
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
scoring_functions=["llm-as-judge::405b-simpleqa"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"sampling_params": {
"strategy": {
"type": "greedy",
},
"max_tokens": 4096,
"repeat_penalty": 1.0,
},
},
},
)
for log in EventLogger().log(response):
log.print()
```
### 2. Agentic Evaluation
- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API.
- We will continue to use the SimpleQA dataset we used in previous example.
- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`.
##### Query Agent Execution Steps
Now, let's look deeper into the agent's execution steps and see if how well our agent performs.
```python
# query the agents session
from rich.pretty import pprint
session_response = client.agents.session.retrieve(
session_id=session_id,
agent_id=agent.agent_id,
)
pprint(session_response)
```
As a sanity check, we will first check if all user prompts is followed by a tool call to `brave_search`.
```python
num_tool_call = 0
for turn in session_response.turns:
for step in turn.steps:
if (
step.step_type == "tool_execution"
and step.tool_calls[0].tool_name == "brave_search"
):
num_tool_call += 1
print(
f"{num_tool_call}/{len(session_response.turns)} user prompts are followed by a tool call to `brave_search`"
)
```
##### Evaluate Agent Responses
Now, we want to evaluate the agent's responses to the user prompts.
1. First, we will process the agent's execution history into a list of rows that can be used for evaluation.
2. Next, we will label the rows with the expected answer.
3. Finally, we will use the `/scoring` API to score the agent's responses.
```python
agent_config = {
"model": "meta-llama/Llama-3.1-405B-Instruct",
"instructions": "You are a helpful assistant",
"sampling_params": {
"strategy": {
"type": "greedy",
},
},
"tools": [
eval_rows = []
expected_answers = [
"Dallas Mavericks and the Minnesota Timberwolves",
"Season 4, Episode 12",
"King Cobra",
]
for i, turn in enumerate(session_response.turns):
eval_rows.append(
{
"type": "brave_search",
"engine": "tavily",
"api_key": userdata.get("TAVILY_SEARCH_API_KEY"),
"input_query": turn.input_messages[0].content,
"generated_answer": turn.output_message.content,
"expected_answer": expected_answers[i],
}
],
"tool_choice": "auto",
"input_shields": [],
"output_shields": [],
"enable_session_persistence": False,
}
)
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
scoring_functions=["llm-as-judge::405b-simpleqa"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "agent",
"config": agent_config,
},
},
pprint(eval_rows)
scoring_params = {
"basic::subset_of": None,
}
scoring_response = client.scoring.score(
input_rows=eval_rows, scoring_functions=scoring_params
)
pprint(scoring_response)
```

View file

@ -1,30 +0,0 @@
## Testing & Evaluation
Llama Stack provides built-in tools for evaluating your applications:
1. **Benchmarking**: Test against standard datasets
2. **Application Evaluation**: Score your application's outputs
3. **Custom Metrics**: Define your own evaluation criteria
Here's how to set up basic evaluation:
```python
# Create an evaluation task
response = client.benchmarks.register(
benchmark_id="my_eval",
dataset_id="my_dataset",
scoring_functions=["accuracy", "relevance"],
)
# Run evaluation
job = client.eval.run_eval(
benchmark_id="my_eval",
task_config={
"type": "app",
"eval_candidate": {"type": "agent", "config": agent_config},
},
)
# Get results
result = client.eval.job_result(benchmark_id="my_eval", job_id=job.job_id)
```

View file

@ -20,6 +20,11 @@ We may add more storage types like Graph IO in the future.
Here's how to set up a vector database for RAG:
```python
# Create http client
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")
# Register a vector db
vector_db_id = "my_documents"
response = client.vector_dbs.register(
@ -81,15 +86,14 @@ results = client.tool_runtime.rag_tool.query(
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
```python
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.lib.agents.agent import Agent
# Configure agent with memory
agent_config = AgentConfig(
# Create agent with memory
agent = Agent(
client,
model="meta-llama/Llama-3.3-70B-Instruct",
instructions="You are a helpful assistant",
enable_session_persistence=False,
toolgroups=[
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
@ -98,8 +102,6 @@ agent_config = AgentConfig(
}
],
)
agent = Agent(client, agent_config)
session_id = agent.create_session("rag_session")
@ -122,7 +124,7 @@ response = agent.create_turn(
],
documents=[
{
"content": "https://raw.githubusercontent.com/example/doc.rst",
"content": "https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/memory_optimizations.rst",
"mime_type": "text/plain",
}
],
@ -136,6 +138,14 @@ response = agent.create_turn(
)
```
You can print the response with below.
```python
from llama_stack_client.lib.agents.event_logger import EventLogger
for log in EventLogger().log(response):
log.print()
```
### Unregistering Vector DBs
If you need to clean up and unregister vector databases, you can do so as follows:

View file

@ -5,7 +5,7 @@ An example of this would be a "db_access" tool group that contains tools for int
Tools are treated as any other resource in llama stack like models. You can register them, have providers for them etc.
When instatiating an agent, you can provide it a list of tool groups that it has access to. Agent gets the corresponding tool definitions for the specified tool groups and passes them along to the model.
When instantiating an agent, you can provide it a list of tool groups that it has access to. Agent gets the corresponding tool definitions for the specified tool groups and passes them along to the model.
Refer to the [Building AI Applications](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb) notebook for more examples on how to use tools.
@ -60,7 +60,7 @@ Features:
- Disabled dangerous system operations
- Configurable execution timeouts
> ⚠️ Important: The code interpreter tool can operate in a controlled enviroment locally or on Podman containers. To ensure proper functionality in containerised environments:
> ⚠️ Important: The code interpreter tool can operate in a controlled environment locally or on Podman containers. To ensure proper functionality in containerized environments:
> - The container requires privileged access (e.g., --privileged).
> - Users without sufficient permissions may encounter permission errors. (`bwrap: Can't mount devpts on /newroot/dev/pts: Permission denied`)
> - 🔒 Security Warning: Privileged mode grants elevated access and bypasses security restrictions. Use only in local, isolated, or controlled environments.
@ -127,15 +127,11 @@ MCP tools require:
## Adding Custom Tools
When you want to use tools other than the built-in tools, you can implement a python function and decorate it with `@client_tool`.
When you want to use tools other than the built-in tools, you just need to implement a python function with a docstring. The content of the docstring will be used to describe the tool and the parameters and passed
along to the generative model.
To define a custom tool, you need to use the `@client_tool` decorator.
```python
from llama_stack_client.lib.agents.client_tool import client_tool
# Example tool definition
@client_tool
def my_tool(input: int) -> int:
"""
Runs my awesome tool.
@ -149,15 +145,7 @@ def my_tool(input: int) -> int:
Once defined, simply pass the tool to the agent config. `Agent` will take care of the rest (calling the model with the tool definition, executing the tool, and returning the result to the model for the next iteration).
```python
# Example agent config with client provided tools
client_tools = [
my_tool,
]
agent_config = AgentConfig(
...,
client_tools=[client_tool.get_tool_definition() for client_tool in client_tools],
)
agent = Agent(client, agent_config, client_tools)
agent = Agent(client, ..., tools=[my_tool])
```
Refer to [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/e2e_loop_with_client_tools.py) for an example of how to use client provided tools.
@ -194,10 +182,10 @@ group_tools = client.tools.list_tools(toolgroup_id="search_tools")
```python
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.types.agent_create_params import AgentConfig
# Configure the AI agent with necessary parameters
agent_config = AgentConfig(
# Instantiate the AI agent with the given configuration
agent = Agent(
client,
name="code-interpreter",
description="A code interpreter agent for executing Python code snippets",
instructions="""
@ -205,14 +193,10 @@ agent_config = AgentConfig(
Always show the generated code, never generate your own code, and never anticipate results.
""",
model="meta-llama/Llama-3.2-3B-Instruct",
toolgroups=["builtin::code_interpreter"],
tools=["builtin::code_interpreter"],
max_infer_iters=5,
enable_session_persistence=False,
)
# Instantiate the AI agent with the given configuration
agent = Agent(client, agent_config)
# Start a session
session_id = agent.create_session("tool_session")