pre-commit fixes

This commit is contained in:
Chantal D Gama Rose 2025-03-14 13:56:05 -07:00
parent 967dd0aa08
commit 7e211f8553
314 changed files with 5574 additions and 11369 deletions

View file

@ -20,6 +20,11 @@ We may add more storage types like Graph IO in the future.
Here's how to set up a vector database for RAG:
```python
# Create http client
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")
# Register a vector db
vector_db_id = "my_documents"
response = client.vector_dbs.register(
@ -81,15 +86,14 @@ results = client.tool_runtime.rag_tool.query(
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
```python
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.lib.agents.agent import Agent
# Configure agent with memory
agent_config = AgentConfig(
# Create agent with memory
agent = Agent(
client,
model="meta-llama/Llama-3.3-70B-Instruct",
instructions="You are a helpful assistant",
enable_session_persistence=False,
toolgroups=[
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
@ -98,8 +102,6 @@ agent_config = AgentConfig(
}
],
)
agent = Agent(client, agent_config)
session_id = agent.create_session("rag_session")
@ -122,7 +124,7 @@ response = agent.create_turn(
],
documents=[
{
"content": "https://raw.githubusercontent.com/example/doc.rst",
"content": "https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/memory_optimizations.rst",
"mime_type": "text/plain",
}
],
@ -136,6 +138,14 @@ response = agent.create_turn(
)
```
You can print the response with below.
```python
from llama_stack_client.lib.agents.event_logger import EventLogger
for log in EventLogger().log(response):
log.print()
```
### Unregistering Vector DBs
If you need to clean up and unregister vector databases, you can do so as follows: