pre-commit fixes

This commit is contained in:
Chantal D Gama Rose 2025-03-14 13:56:05 -07:00
parent 967dd0aa08
commit 7e211f8553
314 changed files with 5574 additions and 11369 deletions

View file

@ -3,16 +3,16 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import BasicScoringConfig
async def get_provider_impl(
config: BasicScoringConfig,
deps: Dict[Api, ProviderSpec],
deps: Dict[Api, Any],
):
from .scoring import BasicScoringImpl

View file

@ -3,7 +3,12 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
class BasicScoringConfig(BaseModel): ...
class BasicScoringConfig(BaseModel):
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {}

View file

@ -23,10 +23,11 @@ from llama_stack.providers.utils.common.data_schema_validator import (
from .config import BasicScoringConfig
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
from .scoring_fn.regex_parser_math_response_scoring_fn import RegexParserMathResponseScoringFn
from .scoring_fn.regex_parser_scoring_fn import RegexParserScoringFn
from .scoring_fn.subset_of_scoring_fn import SubsetOfScoringFn
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn, RegexParserScoringFn]
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn, RegexParserScoringFn, RegexParserMathResponseScoringFn]
class BasicScoringImpl(

View file

@ -12,6 +12,7 @@ from llama_stack.apis.scoring_functions import (
)
MULTILINGUAL_ANSWER_REGEXES = [
r"The best answer is ",
r"Answer\s*:",
r"Answer\s*:", # Korean invisible character
r"উত্তর\s*:",

View file

@ -3,11 +3,11 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from pydantic import BaseModel
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import BraintrustScoringConfig
@ -18,7 +18,7 @@ class BraintrustProviderDataValidator(BaseModel):
async def get_provider_impl(
config: BraintrustScoringConfig,
deps: Dict[Api, ProviderSpec],
deps: Dict[Api, Any],
):
from .braintrust import BraintrustScoringImpl

View file

@ -3,16 +3,16 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import LlmAsJudgeScoringConfig
async def get_provider_impl(
config: LlmAsJudgeScoringConfig,
deps: Dict[Api, ProviderSpec],
deps: Dict[Api, Any],
):
from .scoring import LlmAsJudgeScoringImpl

View file

@ -3,7 +3,12 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
class LlmAsJudgeScoringConfig(BaseModel): ...
class LlmAsJudgeScoringConfig(BaseModel):
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {}

View file

@ -25,7 +25,7 @@ from llama_stack.providers.utils.common.data_schema_validator import (
from .config import LlmAsJudgeScoringConfig
from .scoring_fn.llm_as_judge_scoring_fn import LlmAsJudgeScoringFn
LLM_JUDGE_FNS = [LlmAsJudgeScoringFn]
LLM_JUDGE_FN = LlmAsJudgeScoringFn
class LlmAsJudgeScoringImpl(
@ -43,23 +43,17 @@ class LlmAsJudgeScoringImpl(
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
self.inference_api = inference_api
self.scoring_fn_id_impls = {}
async def initialize(self) -> None:
for fn in LLM_JUDGE_FNS:
impl = fn(inference_api=self.inference_api)
for fn_defs in impl.get_supported_scoring_fn_defs():
self.scoring_fn_id_impls[fn_defs.identifier] = impl
self.llm_as_judge_fn = impl
impl = LLM_JUDGE_FN(inference_api=self.inference_api)
self.llm_as_judge_fn = impl
async def shutdown(self) -> None: ...
async def list_scoring_functions(self) -> List[ScoringFn]:
scoring_fn_defs_list = [
fn_def for impl in self.scoring_fn_id_impls.values() for fn_def in impl.get_supported_scoring_fn_defs()
]
scoring_fn_defs_list = self.llm_as_judge_fn.get_supported_scoring_fn_defs()
for f in scoring_fn_defs_list:
for f in self.llm_as_judge_fn.get_supported_scoring_fn_defs():
assert f.identifier.startswith("llm-as-judge"), (
"All llm-as-judge scoring fn must have identifier prefixed with 'llm-as-judge'! "
)
@ -67,7 +61,7 @@ class LlmAsJudgeScoringImpl(
return scoring_fn_defs_list
async def register_scoring_function(self, function_def: ScoringFn) -> None:
raise NotImplementedError("Register scoring function not implemented yet")
self.llm_as_judge_fn.register_scoring_fn_def(function_def)
async def score_batch(
self,
@ -102,9 +96,7 @@ class LlmAsJudgeScoringImpl(
) -> ScoreResponse:
res = {}
for scoring_fn_id in scoring_functions.keys():
if scoring_fn_id not in self.scoring_fn_id_impls:
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
scoring_fn = self.llm_as_judge_fn
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)

View file

@ -6,7 +6,7 @@
import re
from typing import Any, Dict, Optional
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.inference.inference import Inference, UserMessage
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
@ -58,10 +58,9 @@ class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
judge_response = await self.inference_api.chat_completion(
model_id=fn_def.params.judge_model,
messages=[
{
"role": "user",
"content": judge_input_msg,
}
UserMessage(
content=judge_input_msg,
),
],
)
content = judge_response.completion_message.content