pre-commit fixes

This commit is contained in:
Chantal D Gama Rose 2025-03-14 13:56:05 -07:00
parent 967dd0aa08
commit 7e211f8553
314 changed files with 5574 additions and 11369 deletions

View file

@ -7,7 +7,10 @@ import json
import logging
from typing import AsyncGenerator, List, Optional, Union
from openai import OpenAI
from openai import AsyncOpenAI
from openai.types.chat.chat_completion_chunk import (
ChatCompletionChunk as OpenAIChatCompletionChunk,
)
from llama_stack.apis.common.content_types import (
InterleavedContent,
@ -49,7 +52,6 @@ from llama_stack.providers.utils.inference.model_registry import (
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionResponse,
UnparseableToolCall,
convert_message_to_openai_dict,
convert_tool_call,
@ -155,11 +157,14 @@ def _convert_to_vllm_finish_reason(finish_reason: str) -> StopReason:
async def _process_vllm_chat_completion_stream_response(
stream: AsyncGenerator[OpenAICompatCompletionResponse, None],
stream: AsyncGenerator[OpenAIChatCompletionChunk, None],
) -> AsyncGenerator:
event_type = ChatCompletionResponseEventType.start
tool_call_buf = UnparseableToolCall()
async for chunk in stream:
if not chunk.choices:
log.warning("vLLM failed to generation any completions - check the vLLM server logs for an error.")
continue
choice = chunk.choices[0]
if choice.finish_reason:
args_str = tool_call_buf.arguments
@ -224,7 +229,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
async def initialize(self) -> None:
log.info(f"Initializing VLLM client with base_url={self.config.url}")
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
self.client = AsyncOpenAI(base_url=self.config.url, api_key=self.config.api_token)
async def shutdown(self) -> None:
pass
@ -236,11 +241,13 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
@ -259,7 +266,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
@ -268,6 +275,8 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
# This is to be consistent with OpenAI API and support vLLM <= v0.6.3
# References:
@ -291,10 +300,10 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
return await self._nonstream_chat_completion(request, self.client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
self, request: ChatCompletionRequest, client: AsyncOpenAI
) -> ChatCompletionResponse:
params = await self._get_params(request)
r = client.chat.completions.create(**params)
r = await client.chat.completions.create(**params)
choice = r.choices[0]
result = ChatCompletionResponse(
completion_message=CompletionMessage(
@ -306,17 +315,10 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
)
return result
async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator:
async def _stream_chat_completion(self, request: ChatCompletionRequest, client: AsyncOpenAI) -> AsyncGenerator:
params = await self._get_params(request)
# TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async
# generator so this wrapper is not necessary?
async def _to_async_generator():
s = client.chat.completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
stream = await client.chat.completions.create(**params)
if len(request.tools) > 0:
res = _process_vllm_chat_completion_stream_response(stream)
else:
@ -326,26 +328,20 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
params = await self._get_params(request)
r = self.client.completions.create(**params)
r = await self.client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
# Wrapper for async generator similar
async def _to_async_generator():
stream = self.client.completions.create(**params)
for chunk in stream:
yield chunk
stream = _to_async_generator()
stream = await self.client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
async def register_model(self, model: Model) -> Model:
model = await self.register_helper.register_model(model)
res = self.client.models.list()
available_models = [m.id for m in res]
res = await self.client.models.list()
available_models = [m.id async for m in res]
if model.provider_resource_id not in available_models:
raise ValueError(
f"Model {model.provider_resource_id} is not being served by vLLM. "
@ -401,7 +397,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
assert model.metadata.get("embedding_dimension")
kwargs["dimensions"] = model.metadata.get("embedding_dimension")
assert all(not content_has_media(content) for content in contents), "VLLM does not support media for embeddings"
response = self.client.embeddings.create(
response = await self.client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,