fix(mypy): resolve OpenAI SDK NotGiven/Omit type mismatches

Refactor embeddings API calls to avoid NotGiven/Omit type incompatibility
by conditionally building kwargs dict with only non-None parameters.

- openai_mixin.py: Build kwargs conditionally for embeddings.create()
- gemini.py: Apply same pattern + add Any import

This approach avoids type:ignore comments by not passing NOT_GIVEN sentinel
values that conflict with Omit type annotations in OpenAI SDK.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Ashwin Bharambe 2025-10-27 23:12:59 -07:00
parent 382900d7a8
commit 7e37790647
2 changed files with 25 additions and 24 deletions

View file

@ -4,6 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from openai import NOT_GIVEN
from llama_stack.apis.inference import (
@ -37,22 +39,21 @@ class GeminiInferenceAdapter(OpenAIMixin):
Override embeddings method to handle Gemini's missing usage statistics.
Gemini's embedding API doesn't return usage information, so we provide default values.
"""
# Prepare request parameters
request_params = {
# Build kwargs conditionally to avoid NotGiven/Omit type mismatch
kwargs: dict[str, Any] = {
"model": await self._get_provider_model_id(params.model),
"input": params.input,
"encoding_format": params.encoding_format if params.encoding_format is not None else NOT_GIVEN,
"dimensions": params.dimensions if params.dimensions is not None else NOT_GIVEN,
"user": params.user if params.user is not None else NOT_GIVEN,
}
if params.encoding_format is not None:
kwargs["encoding_format"] = params.encoding_format
if params.dimensions is not None:
kwargs["dimensions"] = params.dimensions
if params.user is not None:
kwargs["user"] = params.user
if params.model_extra:
kwargs["extra_body"] = params.model_extra
# Add extra_body if present
extra_body = params.model_extra
if extra_body:
request_params["extra_body"] = extra_body
# Call OpenAI embeddings API with properly typed parameters
response = await self.client.embeddings.create(**request_params)
response = await self.client.embeddings.create(**kwargs)
data = []
for i, embedding_data in enumerate(response.data):

View file

@ -351,22 +351,22 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
"""
Direct OpenAI embeddings API call.
"""
# Prepare request parameters
request_params = {
# Build kwargs conditionally to avoid NotGiven/Omit type mismatch
# The OpenAI SDK uses Omit in signatures but NOT_GIVEN has type NotGiven
kwargs: dict[str, Any] = {
"model": await self._get_provider_model_id(params.model),
"input": params.input,
"encoding_format": params.encoding_format if params.encoding_format is not None else NOT_GIVEN,
"dimensions": params.dimensions if params.dimensions is not None else NOT_GIVEN,
"user": params.user if params.user is not None else NOT_GIVEN,
}
if params.encoding_format is not None:
kwargs["encoding_format"] = params.encoding_format
if params.dimensions is not None:
kwargs["dimensions"] = params.dimensions
if params.user is not None:
kwargs["user"] = params.user
if params.model_extra:
kwargs["extra_body"] = params.model_extra
# Add extra_body if present
extra_body = params.model_extra
if extra_body:
request_params["extra_body"] = extra_body
# Call OpenAI embeddings API with properly typed parameters
response = await self.client.embeddings.create(**request_params)
response = await self.client.embeddings.create(**kwargs)
data = []
for i, embedding_data in enumerate(response.data):