mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-03 01:03:59 +00:00
portkey integration v1
This commit is contained in:
parent
c8be0bf1c9
commit
7ece0d4d8b
6 changed files with 332 additions and 0 deletions
17
distributions/portkey/build.yaml
Normal file
17
distributions/portkey/build.yaml
Normal file
|
@ -0,0 +1,17 @@
|
|||
version: '2'
|
||||
name: portkey
|
||||
distribution_spec:
|
||||
description: Use Portkey for running LLM inference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference:
|
||||
- remote::portkey
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
memory:
|
||||
- inline::meta-reference
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
0
distributions/portkey/compose.yaml
Normal file
0
distributions/portkey/compose.yaml
Normal file
77
distributions/portkey/run.yaml
Normal file
77
distributions/portkey/run.yaml
Normal file
|
@ -0,0 +1,77 @@
|
|||
version: '2'
|
||||
image_name: portkey
|
||||
docker_image: null
|
||||
conda_env: portkey
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: portkey
|
||||
provider_type: remote::portkey
|
||||
config:
|
||||
base_url: https://api.portkey.ai
|
||||
api_key: ${env.PORTKEY_API_KEY}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
memory:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/portkey}/faiss_store.db
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/portkey}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/portkey/trace_store.db}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/portkey}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: portkey
|
||||
provider_model_id: llama3.1-8b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: portkey
|
||||
provider_model_id: llama-3.3-70b
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
provider_model_id: null
|
||||
model_type: embedding
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: meta-llama/Llama-Guard-3-8B
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
16
llama_stack/providers/remote/inference/portkey/__init__.py
Normal file
16
llama_stack/providers/remote/inference/portkey/__init__.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
|
||||
from .config import PortkeyImplConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: PortkeyImplConfig, _deps):
|
||||
from .portkey import PortkeyInferenceAdapter
|
||||
|
||||
assert isinstance(
|
||||
config, PortkeyImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = PortkeyInferenceAdapter(config)
|
||||
|
||||
await impl.initialize()
|
||||
|
||||
return impl
|
32
llama_stack/providers/remote/inference/portkey/config.py
Normal file
32
llama_stack/providers/remote/inference/portkey/config.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
DEFAULT_BASE_URL = "https://api.portkey.ai/v1"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PortkeyImplConfig(BaseModel):
|
||||
base_url: str = Field(
|
||||
default=os.environ.get("PORTKEY_BASE_URL", DEFAULT_BASE_URL),
|
||||
description="Base URL for the Portkey API",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
default=os.environ.get("PORTKEY_API_KEY"),
|
||||
description="Portkey API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"base_url": DEFAULT_BASE_URL,
|
||||
"api_key": "${env.PORTKEY_API_KEY}",
|
||||
}
|
190
llama_stack/providers/remote/inference/portkey/portkey.py
Normal file
190
llama_stack/providers/remote/inference/portkey/portkey.py
Normal file
|
@ -0,0 +1,190 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from portkey_ai import AsyncPortkey
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
)
|
||||
|
||||
from .config import PortkeyImplConfig
|
||||
|
||||
|
||||
model_aliases = [
|
||||
build_model_alias(
|
||||
"llama3.1-8b",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.3-70b",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class PortkeyInferenceAdapter(ModelRegistryHelper, Inference):
|
||||
def __init__(self, config: PortkeyImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
self,
|
||||
model_aliases=model_aliases,
|
||||
)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
self.client = AsyncPortkey(
|
||||
base_url=self.config.base_url, api_key=self.config.api_key
|
||||
)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(
|
||||
request,
|
||||
)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
|
||||
r = await self.client.completions.create(**params)
|
||||
|
||||
return process_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = await self.client.completions.create(**params)
|
||||
|
||||
async for chunk in process_completion_stream_response(stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
|
||||
r = await self.client.completions.create(**params)
|
||||
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = await self.client.completions.create(**params)
|
||||
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(
|
||||
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
||||
) -> dict:
|
||||
if request.sampling_params and request.sampling_params.top_k:
|
||||
raise ValueError("`top_k` not supported by Portkey")
|
||||
|
||||
prompt = ""
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
prompt = await chat_completion_request_to_prompt(
|
||||
request, self.get_llama_model(request.model), self.formatter
|
||||
)
|
||||
elif isinstance(request, CompletionRequest):
|
||||
prompt = await completion_request_to_prompt(request, self.formatter)
|
||||
else:
|
||||
raise ValueError(f"Unknown request type {type(request)}")
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
"prompt": prompt,
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedContent],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
Loading…
Add table
Add a link
Reference in a new issue