mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-12 04:00:42 +00:00
fix test
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> updating structure of default Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> fix model id creation Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
b3addc94d1
commit
7ffd20d112
10 changed files with 119 additions and 62 deletions
|
|
@ -87,20 +87,19 @@ Llama Stack provides OpenAI-compatible RAG capabilities through:
|
|||
To enable automatic vector store creation without specifying embedding models, configure a default embedding model in your run.yaml like so:
|
||||
|
||||
```yaml
|
||||
models:
|
||||
- model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
provider_id: inline::sentence-transformers
|
||||
metadata:
|
||||
embedding_dimension: 768
|
||||
|
||||
vector_stores:
|
||||
default_embedding_model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
```
|
||||
|
||||
With this configuration:
|
||||
- `client.vector_stores.create()` works without requiring embedding model parameters
|
||||
- The system automatically uses the default model and its embedding dimension for any newly created vector store
|
||||
- The `vector_stores` section explicitly configures which embedding model to use as default
|
||||
- `client.vector_stores.create()` works without requiring embedding model or provider parameters
|
||||
- The system automatically uses the default vector store provider (`faiss`) when multiple providers are available
|
||||
- The system automatically uses the default embedding model (`sentence-transformers/nomic-ai/nomic-embed-text-v1.5`) for any newly created vector store
|
||||
- The `default_provider_id` specifies which vector storage backend to use
|
||||
- The `default_embedding_model` specifies both the inference provider and model for embeddings
|
||||
|
||||
## Vector Store Operations
|
||||
|
||||
|
|
@ -109,14 +108,15 @@ With this configuration:
|
|||
You can create vector stores with automatic or explicit embedding model selection:
|
||||
|
||||
```python
|
||||
# Automatic - uses default configured embedding model
|
||||
# Automatic - uses default configured embedding model and vector store provider
|
||||
vs = client.vector_stores.create()
|
||||
|
||||
# Explicit - specify embedding model when you need a specific one
|
||||
# Explicit - specify embedding model and/or provider when you need specific ones
|
||||
vs = client.vector_stores.create(
|
||||
extra_body={
|
||||
"embedding_model": "nomic-ai/nomic-embed-text-v1.5",
|
||||
"embedding_dimension": 768
|
||||
"provider_id": "faiss", # Optional: specify vector store provider
|
||||
"embedding_model": "sentence-transformers/nomic-ai/nomic-embed-text-v1.5",
|
||||
"embedding_dimension": 768 # Optional: will be auto-detected if not provided
|
||||
}
|
||||
)
|
||||
```
|
||||
|
|
|
|||
|
|
@ -351,17 +351,30 @@ class AuthenticationRequiredError(Exception):
|
|||
pass
|
||||
|
||||
|
||||
class DefaultEmbeddingModel(BaseModel):
|
||||
"""Configuration for default embedding model."""
|
||||
|
||||
provider_id: str = Field(
|
||||
...,
|
||||
description="ID of the inference provider that serves the embedding model (e.g., 'sentence-transformers').",
|
||||
)
|
||||
model_id: str = Field(
|
||||
...,
|
||||
description="ID of the embedding model (e.g., 'nomic-ai/nomic-embed-text-v1.5').",
|
||||
)
|
||||
|
||||
|
||||
class VectorStoresConfig(BaseModel):
|
||||
"""Configuration for vector stores in the stack."""
|
||||
|
||||
embedding_model_id: str = Field(
|
||||
...,
|
||||
description="ID of the embedding model to use as default for vector stores when none is specified. Must reference a model defined in the 'models' section.",
|
||||
)
|
||||
provider_id: str | None = Field(
|
||||
default_provider_id: str | None = Field(
|
||||
default=None,
|
||||
description="ID of the vector_io provider to use as default when multiple providers are available and none is specified.",
|
||||
)
|
||||
default_embedding_model: DefaultEmbeddingModel | None = Field(
|
||||
default=None,
|
||||
description="Default embedding model configuration for vector stores.",
|
||||
)
|
||||
|
||||
|
||||
class QuotaPeriod(StrEnum):
|
||||
|
|
|
|||
|
|
@ -126,7 +126,11 @@ class VectorIORouter(VectorIO):
|
|||
|
||||
# Use default embedding model if not specified
|
||||
if embedding_model is None and self.vector_stores_config is not None:
|
||||
embedding_model = self.vector_stores_config.embedding_model_id
|
||||
if self.vector_stores_config.default_embedding_model is not None:
|
||||
# Construct the full model ID with provider prefix
|
||||
embedding_provider_id = self.vector_stores_config.default_embedding_model.provider_id
|
||||
model_id = self.vector_stores_config.default_embedding_model.model_id
|
||||
embedding_model = f"{embedding_provider_id}/{model_id}"
|
||||
|
||||
if embedding_model is not None and embedding_dimension is None:
|
||||
embedding_dimension = await self._get_embedding_model_dimension(embedding_model)
|
||||
|
|
@ -139,8 +143,8 @@ class VectorIORouter(VectorIO):
|
|||
if num_providers > 1:
|
||||
available_providers = list(self.routing_table.impls_by_provider_id.keys())
|
||||
# Use default configured provider
|
||||
if self.vector_stores_config and self.vector_stores_config.provider_id:
|
||||
default_provider = self.vector_stores_config.provider_id
|
||||
if self.vector_stores_config and self.vector_stores_config.default_provider_id:
|
||||
default_provider = self.vector_stores_config.default_provider_id
|
||||
if default_provider in available_providers:
|
||||
provider_id = default_provider
|
||||
logger.debug(f"Using configured default vector store provider: {provider_id}")
|
||||
|
|
|
|||
|
|
@ -135,41 +135,52 @@ async def validate_vector_stores_config(run_config: StackRunConfig, impls: dict[
|
|||
return
|
||||
|
||||
vector_stores_config = run_config.vector_stores
|
||||
default_model_id = vector_stores_config.embedding_model_id
|
||||
|
||||
if Api.models not in impls:
|
||||
raise ValueError(f"Models API is not available but vector_stores config requires model '{default_model_id}'")
|
||||
# Validate default embedding model if configured
|
||||
if vector_stores_config.default_embedding_model:
|
||||
default_embedding_model = vector_stores_config.default_embedding_model
|
||||
provider_id = default_embedding_model.provider_id
|
||||
model_id = default_embedding_model.model_id
|
||||
# Construct the full model identifier
|
||||
default_model_id = f"{provider_id}/{model_id}"
|
||||
|
||||
models_impl = impls[Api.models]
|
||||
response = await models_impl.list_models()
|
||||
models_list = response.data if hasattr(response, "data") else response
|
||||
if Api.models not in impls:
|
||||
raise ValueError(
|
||||
f"Models API is not available but vector_stores config requires model '{default_model_id}'"
|
||||
)
|
||||
|
||||
# find default embedding model
|
||||
default_model = None
|
||||
for model in models_list:
|
||||
if model.identifier == default_model_id:
|
||||
default_model = model
|
||||
break
|
||||
models_impl = impls[Api.models]
|
||||
response = await models_impl.list_models()
|
||||
models_list = response.data if hasattr(response, "data") else response
|
||||
|
||||
if not default_model:
|
||||
available_models = [m.identifier for m in models_list if m.model_type == "embedding"]
|
||||
raise ValueError(
|
||||
f"Embedding model '{default_model_id}' not found. Available embedding models: {available_models}"
|
||||
)
|
||||
# find default embedding model
|
||||
default_model = None
|
||||
for model in models_list:
|
||||
if model.identifier == default_model_id:
|
||||
default_model = model
|
||||
break
|
||||
|
||||
if default_model.model_type != "embedding":
|
||||
raise ValueError(f"Model '{default_model_id}' is type '{default_model.model_type}', not 'embedding'")
|
||||
if not default_model:
|
||||
available_models = [m.identifier for m in models_list if m.model_type == "embedding"]
|
||||
raise ValueError(
|
||||
f"Embedding model '{default_model_id}' not found. Available embedding models: {available_models}"
|
||||
)
|
||||
|
||||
embedding_dimension = default_model.metadata.get("embedding_dimension")
|
||||
if embedding_dimension is None:
|
||||
raise ValueError(f"Embedding model '{default_model_id}' is missing 'embedding_dimension' in metadata")
|
||||
if default_model.model_type != "embedding":
|
||||
raise ValueError(f"Model '{default_model_id}' is type '{default_model.model_type}', not 'embedding'")
|
||||
|
||||
try:
|
||||
int(embedding_dimension)
|
||||
except ValueError as err:
|
||||
raise ValueError(f"Embedding dimension '{embedding_dimension}' cannot be converted to an integer") from err
|
||||
embedding_dimension = default_model.metadata.get("embedding_dimension")
|
||||
if embedding_dimension is None:
|
||||
raise ValueError(f"Embedding model '{default_model_id}' is missing 'embedding_dimension' in metadata")
|
||||
|
||||
logger.debug(f"Validated default embedding model: {default_model_id} (dimension: {embedding_dimension})")
|
||||
try:
|
||||
int(embedding_dimension)
|
||||
except ValueError as err:
|
||||
raise ValueError(f"Embedding dimension '{embedding_dimension}' cannot be converted to an integer") from err
|
||||
|
||||
logger.debug(f"Validated default embedding model: {default_model_id} (dimension: {embedding_dimension})")
|
||||
|
||||
# If no default embedding model is configured, that's fine - validation passes
|
||||
|
||||
|
||||
class EnvVarError(Exception):
|
||||
|
|
|
|||
|
|
@ -255,4 +255,7 @@ server:
|
|||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
embedding_model_id: sentence-transformers/nomic-ai/nomic-embed-text-v1.5
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
|
|
|
|||
|
|
@ -258,4 +258,7 @@ server:
|
|||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
embedding_model_id: sentence-transformers/nomic-ai/nomic-embed-text-v1.5
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
|
|
|
|||
|
|
@ -255,4 +255,7 @@ server:
|
|||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
embedding_model_id: sentence-transformers/nomic-ai/nomic-embed-text-v1.5
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ from typing import Any
|
|||
|
||||
from llama_stack.core.datatypes import (
|
||||
BuildProvider,
|
||||
DefaultEmbeddingModel,
|
||||
Provider,
|
||||
ProviderSpec,
|
||||
ShieldInput,
|
||||
|
|
@ -249,7 +250,11 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
|
|||
default_tool_groups=default_tool_groups,
|
||||
default_shields=default_shields,
|
||||
vector_stores_config=VectorStoresConfig(
|
||||
embedding_model_id="sentence-transformers/nomic-ai/nomic-embed-text-v1.5"
|
||||
default_provider_id="faiss",
|
||||
default_embedding_model=DefaultEmbeddingModel(
|
||||
provider_id="sentence-transformers",
|
||||
model_id="nomic-ai/nomic-embed-text-v1.5",
|
||||
),
|
||||
),
|
||||
),
|
||||
},
|
||||
|
|
|
|||
|
|
@ -8,9 +8,8 @@ import time
|
|||
from io import BytesIO
|
||||
|
||||
import pytest
|
||||
from llama_stack_client import BadRequestError, NotFoundError
|
||||
from llama_stack_client import BadRequestError
|
||||
from openai import BadRequestError as OpenAIBadRequestError
|
||||
from openai import NotFoundError as OpenAINotFoundError
|
||||
|
||||
from llama_stack.apis.vector_io import Chunk
|
||||
from llama_stack.core.library_client import LlamaStackAsLibraryClient
|
||||
|
|
@ -839,7 +838,7 @@ def test_openai_vector_store_list_files_invalid_vector_store(
|
|||
if isinstance(compat_client, LlamaStackAsLibraryClient):
|
||||
errors = ValueError
|
||||
else:
|
||||
errors = (NotFoundError, OpenAINotFoundError)
|
||||
errors = (BadRequestError, OpenAIBadRequestError)
|
||||
|
||||
with pytest.raises(errors):
|
||||
compat_client.vector_stores.files.list(vector_store_id="abc123")
|
||||
|
|
@ -1528,11 +1527,11 @@ def test_openai_vector_store_file_batch_error_handling(
|
|||
batch_id="non_existent_batch_id",
|
||||
)
|
||||
|
||||
# Test operations on non-existent vector store (returns NotFoundError)
|
||||
# Test operations on non-existent vector store (returns BadRequestError)
|
||||
if isinstance(compat_client, LlamaStackAsLibraryClient):
|
||||
vector_store_errors = ValueError
|
||||
else:
|
||||
vector_store_errors = (NotFoundError, OpenAINotFoundError)
|
||||
vector_store_errors = (BadRequestError, OpenAIBadRequestError)
|
||||
|
||||
with pytest.raises(vector_store_errors): # Should raise an error for non-existent vector store
|
||||
compat_client.vector_stores.file_batches.create(
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ from unittest.mock import AsyncMock
|
|||
import pytest
|
||||
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.core.datatypes import StackRunConfig, VectorStoresConfig
|
||||
from llama_stack.core.datatypes import DefaultEmbeddingModel, StackRunConfig, VectorStoresConfig
|
||||
from llama_stack.core.stack import validate_vector_stores_config
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
|
|
@ -20,7 +20,15 @@ class TestVectorStoresValidation:
|
|||
async def test_validate_missing_model(self):
|
||||
"""Test validation fails when model not found."""
|
||||
run_config = StackRunConfig(
|
||||
image_name="test", providers={}, vector_stores=VectorStoresConfig(embedding_model_id="missing")
|
||||
image_name="test",
|
||||
providers={},
|
||||
vector_stores=VectorStoresConfig(
|
||||
default_provider_id="faiss",
|
||||
default_embedding_model=DefaultEmbeddingModel(
|
||||
provider_id="p",
|
||||
model_id="missing",
|
||||
),
|
||||
),
|
||||
)
|
||||
mock_models = AsyncMock()
|
||||
mock_models.list_models.return_value = []
|
||||
|
|
@ -31,12 +39,20 @@ class TestVectorStoresValidation:
|
|||
async def test_validate_success(self):
|
||||
"""Test validation passes with valid model."""
|
||||
run_config = StackRunConfig(
|
||||
image_name="test", providers={}, vector_stores=VectorStoresConfig(embedding_model_id="valid")
|
||||
image_name="test",
|
||||
providers={},
|
||||
vector_stores=VectorStoresConfig(
|
||||
default_provider_id="faiss",
|
||||
default_embedding_model=DefaultEmbeddingModel(
|
||||
provider_id="p",
|
||||
model_id="valid",
|
||||
),
|
||||
),
|
||||
)
|
||||
mock_models = AsyncMock()
|
||||
mock_models.list_models.return_value = [
|
||||
Model(
|
||||
identifier="valid",
|
||||
identifier="p/valid", # Must match provider_id/model_id format
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 768},
|
||||
provider_id="p",
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue