mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
cleanup, moving stuff to common, nuke utils
This commit is contained in:
parent
fe582a739d
commit
803976df26
13 changed files with 263 additions and 396 deletions
|
@ -5,22 +5,16 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import importlib
|
||||
import inspect
|
||||
import json
|
||||
import shlex
|
||||
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import get_args, get_origin, List, Literal, Optional, Union
|
||||
|
||||
import yaml
|
||||
from pydantic import BaseModel
|
||||
from termcolor import cprint
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.utils import DISTRIBS_BASE_DIR, EnumEncoder
|
||||
from llama_toolchain.common.config_dirs import DISTRIBS_BASE_DIR
|
||||
|
||||
|
||||
class DistributionConfigure(Subcommand):
|
||||
|
@ -66,9 +60,11 @@ class DistributionConfigure(Subcommand):
|
|||
|
||||
|
||||
def configure_llama_distribution(dist: "Distribution", conda_env: str):
|
||||
from llama_toolchain.common.exec import run_command
|
||||
from llama_toolchain.common.prompt_for_config import prompt_for_config
|
||||
from llama_toolchain.common.serialize import EnumEncoder
|
||||
from llama_toolchain.distribution.datatypes import PassthroughApiAdapter
|
||||
|
||||
from .utils import run_command
|
||||
from llama_toolchain.distribution.dynamic import instantiate_class_type
|
||||
|
||||
python_exe = run_command(shlex.split("which python"))
|
||||
# simple check
|
||||
|
@ -121,215 +117,3 @@ def configure_llama_distribution(dist: "Distribution", conda_env: str):
|
|||
fp.write(yaml.dump(dist_config, sort_keys=False))
|
||||
|
||||
print(f"YAML configuration has been written to {config_path}")
|
||||
|
||||
|
||||
def instantiate_class_type(fully_qualified_name):
|
||||
module_name, class_name = fully_qualified_name.rsplit(".", 1)
|
||||
module = importlib.import_module(module_name)
|
||||
return getattr(module, class_name)
|
||||
|
||||
|
||||
def is_list_of_primitives(field_type):
|
||||
"""Check if a field type is a List of primitive types."""
|
||||
origin = get_origin(field_type)
|
||||
if origin is List or origin is list:
|
||||
args = get_args(field_type)
|
||||
if len(args) == 1 and args[0] in (int, float, str, bool):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def get_literal_values(field):
|
||||
"""Extract literal values from a field if it's a Literal type."""
|
||||
if get_origin(field.annotation) is Literal:
|
||||
return get_args(field.annotation)
|
||||
return None
|
||||
|
||||
|
||||
def is_optional(field_type):
|
||||
"""Check if a field type is Optional."""
|
||||
return get_origin(field_type) is Union and type(None) in get_args(field_type)
|
||||
|
||||
|
||||
def get_non_none_type(field_type):
|
||||
"""Get the non-None type from an Optional type."""
|
||||
return next(arg for arg in get_args(field_type) if arg is not type(None))
|
||||
|
||||
|
||||
# TODO: maybe support List values (for simple types, it should be comma-separated and for complex ones,
|
||||
# it should prompt iteratively if the user wants to add more values)
|
||||
def prompt_for_config(
|
||||
config_type: type[BaseModel], existing_config: Optional[BaseModel] = None
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Recursively prompt the user for configuration values based on a Pydantic BaseModel.
|
||||
|
||||
Args:
|
||||
config_type: A Pydantic BaseModel class representing the configuration structure.
|
||||
|
||||
Returns:
|
||||
An instance of the config_type with user-provided values.
|
||||
"""
|
||||
config_data = {}
|
||||
|
||||
for field_name, field in config_type.__fields__.items():
|
||||
field_type = field.annotation
|
||||
|
||||
existing_value = (
|
||||
getattr(existing_config, field_name) if existing_config else None
|
||||
)
|
||||
if existing_value:
|
||||
default_value = existing_value
|
||||
else:
|
||||
default_value = (
|
||||
field.default if not isinstance(field.default, type(Ellipsis)) else None
|
||||
)
|
||||
is_required = field.required
|
||||
|
||||
# Skip fields with Literal type
|
||||
if get_origin(field_type) is Literal:
|
||||
continue
|
||||
|
||||
if inspect.isclass(field_type) and issubclass(field_type, Enum):
|
||||
prompt = f"Choose {field_name} (options: {', '.join(e.name for e in field_type)}):"
|
||||
while True:
|
||||
# this branch does not handle existing and default values yet
|
||||
user_input = input(prompt + " ")
|
||||
try:
|
||||
config_data[field_name] = field_type[user_input]
|
||||
break
|
||||
except KeyError:
|
||||
print(
|
||||
f"Invalid choice. Please choose from: {', '.join(e.name for e in field_type)}"
|
||||
)
|
||||
continue
|
||||
|
||||
# Check if the field is a discriminated union
|
||||
if get_origin(field_type) is Annotated:
|
||||
inner_type = get_args(field_type)[0]
|
||||
if get_origin(inner_type) is Union:
|
||||
discriminator = field.field_info.discriminator
|
||||
if discriminator:
|
||||
union_types = get_args(inner_type)
|
||||
# Find the discriminator field in each union type
|
||||
type_map = {}
|
||||
for t in union_types:
|
||||
disc_field = t.__fields__[discriminator]
|
||||
literal_values = get_literal_values(disc_field)
|
||||
if literal_values:
|
||||
for value in literal_values:
|
||||
type_map[value] = t
|
||||
|
||||
while True:
|
||||
discriminator_value = input(
|
||||
f"Enter the {discriminator} (options: {', '.join(type_map.keys())}): "
|
||||
)
|
||||
if discriminator_value in type_map:
|
||||
chosen_type = type_map[discriminator_value]
|
||||
print(f"\nConfiguring {chosen_type.__name__}:")
|
||||
|
||||
if existing_value and (
|
||||
getattr(existing_value, discriminator)
|
||||
!= discriminator_value
|
||||
):
|
||||
existing_value = None
|
||||
|
||||
sub_config = prompt_for_config(chosen_type, existing_value)
|
||||
config_data[field_name] = sub_config
|
||||
# Set the discriminator field in the sub-config
|
||||
setattr(sub_config, discriminator, discriminator_value)
|
||||
break
|
||||
else:
|
||||
print(f"Invalid {discriminator}. Please try again.")
|
||||
continue
|
||||
|
||||
if (
|
||||
is_optional(field_type)
|
||||
and inspect.isclass(get_non_none_type(field_type))
|
||||
and issubclass(get_non_none_type(field_type), BaseModel)
|
||||
):
|
||||
prompt = f"Do you want to configure {field_name}? (y/n): "
|
||||
if input(prompt).lower() != "y":
|
||||
config_data[field_name] = None
|
||||
continue
|
||||
nested_type = get_non_none_type(field_type)
|
||||
print(f"Entering sub-configuration for {field_name}:")
|
||||
config_data[field_name] = prompt_for_config(nested_type, existing_value)
|
||||
elif inspect.isclass(field_type) and issubclass(field_type, BaseModel):
|
||||
print(f"\nEntering sub-configuration for {field_name}:")
|
||||
config_data[field_name] = prompt_for_config(
|
||||
field_type,
|
||||
existing_value,
|
||||
)
|
||||
else:
|
||||
prompt = f"Enter value for {field_name}"
|
||||
if existing_value is not None:
|
||||
prompt += f" (existing: {existing_value})"
|
||||
elif default_value is not None:
|
||||
prompt += f" (default: {default_value})"
|
||||
if is_optional(field_type):
|
||||
prompt += " (optional)"
|
||||
elif is_required:
|
||||
prompt += " (required)"
|
||||
prompt += ": "
|
||||
|
||||
while True:
|
||||
user_input = input(prompt)
|
||||
if user_input == "":
|
||||
if default_value is not None:
|
||||
config_data[field_name] = default_value
|
||||
break
|
||||
elif is_optional(field_type) or not is_required:
|
||||
config_data[field_name] = None
|
||||
break
|
||||
else:
|
||||
print("This field is required. Please provide a value.")
|
||||
continue
|
||||
|
||||
try:
|
||||
# Handle Optional types
|
||||
if is_optional(field_type):
|
||||
if user_input.lower() == "none":
|
||||
config_data[field_name] = None
|
||||
break
|
||||
field_type = get_non_none_type(field_type)
|
||||
|
||||
# Handle List of primitives
|
||||
if is_list_of_primitives(field_type):
|
||||
try:
|
||||
value = json.loads(user_input)
|
||||
if not isinstance(value, list):
|
||||
raise ValueError("Input must be a JSON-encoded list")
|
||||
element_type = get_args(field_type)[0]
|
||||
config_data[field_name] = [
|
||||
element_type(item) for item in value
|
||||
]
|
||||
break
|
||||
except json.JSONDecodeError:
|
||||
print(
|
||||
"Invalid JSON. Please enter a valid JSON-encoded list."
|
||||
)
|
||||
continue
|
||||
except ValueError as e:
|
||||
print(f"{str(e)}")
|
||||
continue
|
||||
|
||||
# Convert the input to the correct type
|
||||
if inspect.isclass(field_type) and issubclass(
|
||||
field_type, BaseModel
|
||||
):
|
||||
# For nested BaseModels, we assume a dictionary-like string input
|
||||
import ast
|
||||
|
||||
config_data[field_name] = field_type(
|
||||
**ast.literal_eval(user_input)
|
||||
)
|
||||
else:
|
||||
config_data[field_name] = field_type(user_input)
|
||||
break
|
||||
except ValueError:
|
||||
print(
|
||||
f"Invalid input. Expected type: {getattr(field_type, '__name__', str(field_type))}"
|
||||
)
|
||||
|
||||
return config_type(**config_data)
|
||||
|
|
|
@ -11,7 +11,7 @@ import shlex
|
|||
import pkg_resources
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.utils import DISTRIBS_BASE_DIR
|
||||
from llama_toolchain.common.config_dirs import DISTRIBS_BASE_DIR
|
||||
|
||||
|
||||
class DistributionInstall(Subcommand):
|
||||
|
@ -46,9 +46,9 @@ class DistributionInstall(Subcommand):
|
|||
)
|
||||
|
||||
def _run_distribution_install_cmd(self, args: argparse.Namespace) -> None:
|
||||
from llama_toolchain.common.exec import run_command, run_with_pty
|
||||
from llama_toolchain.distribution.distribution import distribution_dependencies
|
||||
from llama_toolchain.distribution.registry import resolve_distribution
|
||||
from .utils import run_command, run_with_pty
|
||||
|
||||
os.makedirs(DISTRIBS_BASE_DIR, exist_ok=True)
|
||||
script = pkg_resources.resource_filename(
|
||||
|
|
|
@ -11,7 +11,7 @@ from pathlib import Path
|
|||
import yaml
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.utils import DISTRIBS_BASE_DIR
|
||||
from llama_toolchain.common.config_dirs import DISTRIBS_BASE_DIR
|
||||
|
||||
|
||||
class DistributionStart(Subcommand):
|
||||
|
@ -48,9 +48,9 @@ class DistributionStart(Subcommand):
|
|||
)
|
||||
|
||||
def _run_distribution_start_cmd(self, args: argparse.Namespace) -> None:
|
||||
from llama_toolchain.common.exec import run_command
|
||||
from llama_toolchain.distribution.registry import resolve_distribution
|
||||
from llama_toolchain.distribution.server import main as distribution_server_init
|
||||
from .utils import run_command
|
||||
|
||||
dist = resolve_distribution(args.name)
|
||||
if dist is None:
|
||||
|
@ -67,6 +67,7 @@ class DistributionStart(Subcommand):
|
|||
config = yaml.safe_load(fp)
|
||||
|
||||
conda_env = config["conda_env"]
|
||||
|
||||
python_exe = run_command(shlex.split("which python"))
|
||||
# simple check, unfortunate
|
||||
if conda_env not in python_exe:
|
||||
|
@ -80,8 +81,3 @@ class DistributionStart(Subcommand):
|
|||
args.port,
|
||||
disable_ipv6=args.disable_ipv6,
|
||||
)
|
||||
# run_with_pty(
|
||||
# shlex.split(
|
||||
# f"conda run -n {conda_env} python -m llama_toolchain.distribution.server {dist.name} {config_yaml} --port 5000"
|
||||
# )
|
||||
# )
|
||||
|
|
|
@ -16,10 +16,7 @@ import httpx
|
|||
from termcolor import cprint
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.utils import LLAMA_STACK_CONFIG_DIR
|
||||
|
||||
|
||||
DEFAULT_CHECKPOINT_DIR = os.path.join(LLAMA_STACK_CONFIG_DIR, "checkpoints")
|
||||
from llama_toolchain.common.config_dirs import DEFAULT_CHECKPOINT_DIR
|
||||
|
||||
|
||||
class Download(Subcommand):
|
||||
|
|
|
@ -1,91 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import textwrap
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.utils import LLAMA_STACK_CONFIG_DIR
|
||||
|
||||
|
||||
CONFIGS_BASE_DIR = os.path.join(LLAMA_STACK_CONFIG_DIR, "configs")
|
||||
|
||||
|
||||
class InferenceConfigure(Subcommand):
|
||||
"""Llama cli for configuring llama toolchain configs"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"configure",
|
||||
prog="llama inference configure",
|
||||
description="Configure llama toolchain inference configs",
|
||||
epilog=textwrap.dedent(
|
||||
"""
|
||||
Example:
|
||||
llama inference configure
|
||||
"""
|
||||
),
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_inference_configure_cmd)
|
||||
|
||||
def _add_arguments(self):
|
||||
pass
|
||||
|
||||
def read_user_inputs(self):
|
||||
checkpoint_dir = input(
|
||||
"Enter the checkpoint directory for the model (e.g., ~/.llama/checkpoints/Meta-Llama-3-8B/): "
|
||||
)
|
||||
model_parallel_size = input(
|
||||
"Enter model parallel size (e.g., 1 for 8B / 8 for 70B and 405B): "
|
||||
)
|
||||
assert model_parallel_size.isdigit() and int(model_parallel_size) in {
|
||||
1,
|
||||
8,
|
||||
}, "model parallel size must be 1 or 8"
|
||||
|
||||
return checkpoint_dir, model_parallel_size
|
||||
|
||||
def write_output_yaml(self, checkpoint_dir, model_parallel_size, yaml_output_path):
|
||||
default_conf_path = pkg_resources.resource_filename(
|
||||
"llama_toolchain", "data/default_inference_config.yaml"
|
||||
)
|
||||
with open(default_conf_path, "r") as f:
|
||||
yaml_content = f.read()
|
||||
|
||||
yaml_content = yaml_content.format(
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
model_parallel_size=model_parallel_size,
|
||||
)
|
||||
|
||||
with open(yaml_output_path, "w") as yaml_file:
|
||||
yaml_file.write(yaml_content.strip())
|
||||
|
||||
print(f"YAML configuration has been written to {yaml_output_path}")
|
||||
|
||||
def _run_inference_configure_cmd(self, args: argparse.Namespace) -> None:
|
||||
checkpoint_dir, model_parallel_size = self.read_user_inputs()
|
||||
checkpoint_dir = os.path.expanduser(checkpoint_dir)
|
||||
|
||||
assert (
|
||||
Path(checkpoint_dir).exists() and Path(checkpoint_dir).is_dir()
|
||||
), f"{checkpoint_dir} does not exist or it not a directory"
|
||||
|
||||
os.makedirs(CONFIGS_BASE_DIR, exist_ok=True)
|
||||
yaml_output_path = Path(CONFIGS_BASE_DIR) / "inference.yaml"
|
||||
|
||||
self.write_output_yaml(
|
||||
checkpoint_dir,
|
||||
model_parallel_size,
|
||||
yaml_output_path,
|
||||
)
|
|
@ -1,34 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import textwrap
|
||||
|
||||
from llama_toolchain.cli.inference.configure import InferenceConfigure
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
class InferenceParser(Subcommand):
|
||||
"""Llama cli for inference apis"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"inference",
|
||||
prog="llama inference",
|
||||
description="Run inference on a llama model",
|
||||
epilog=textwrap.dedent(
|
||||
"""
|
||||
Example:
|
||||
llama inference start <options>
|
||||
"""
|
||||
),
|
||||
)
|
||||
|
||||
subparsers = self.parser.add_subparsers(title="inference_subcommands")
|
||||
|
||||
# Add sub-commands
|
||||
InferenceConfigure.create(subparsers)
|
|
@ -13,7 +13,7 @@ from termcolor import colored
|
|||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.cli.table import print_table
|
||||
from llama_toolchain.utils import EnumEncoder
|
||||
from llama_toolchain.common.serialize import EnumEncoder
|
||||
|
||||
|
||||
class ModelDescribe(Subcommand):
|
||||
|
|
15
llama_toolchain/common/config_dirs.py
Normal file
15
llama_toolchain/common/config_dirs.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
LLAMA_STACK_CONFIG_DIR = os.path.expanduser("~/.llama/")
|
||||
|
||||
DISTRIBS_BASE_DIR = Path(LLAMA_STACK_CONFIG_DIR) / "distributions"
|
||||
|
||||
DEFAULT_CHECKPOINT_DIR = Path(LLAMA_STACK_CONFIG_DIR) / "checkpoints"
|
|
@ -16,6 +16,8 @@ import termios
|
|||
from termcolor import cprint
|
||||
|
||||
|
||||
# run a command in a pseudo-terminal, with interrupt handling,
|
||||
# useful when you want to run interactive things
|
||||
def run_with_pty(command):
|
||||
master, slave = pty.openpty()
|
||||
|
224
llama_toolchain/common/prompt_for_config.py
Normal file
224
llama_toolchain/common/prompt_for_config.py
Normal file
|
@ -0,0 +1,224 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import inspect
|
||||
import json
|
||||
from enum import Enum
|
||||
|
||||
from typing import get_args, get_origin, List, Literal, Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from typing_extensions import Annotated
|
||||
|
||||
|
||||
def is_list_of_primitives(field_type):
|
||||
"""Check if a field type is a List of primitive types."""
|
||||
origin = get_origin(field_type)
|
||||
if origin is List or origin is list:
|
||||
args = get_args(field_type)
|
||||
if len(args) == 1 and args[0] in (int, float, str, bool):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def get_literal_values(field):
|
||||
"""Extract literal values from a field if it's a Literal type."""
|
||||
if get_origin(field.annotation) is Literal:
|
||||
return get_args(field.annotation)
|
||||
return None
|
||||
|
||||
|
||||
def is_optional(field_type):
|
||||
"""Check if a field type is Optional."""
|
||||
return get_origin(field_type) is Union and type(None) in get_args(field_type)
|
||||
|
||||
|
||||
def get_non_none_type(field_type):
|
||||
"""Get the non-None type from an Optional type."""
|
||||
return next(arg for arg in get_args(field_type) if arg is not type(None))
|
||||
|
||||
|
||||
# This is somewhat elaborate, but does not purport to be comprehensive in any way.
|
||||
# We should add handling for the most common cases to tide us over.
|
||||
#
|
||||
# doesn't support List[nested_class] yet or Dicts of any kind. needs a bunch of
|
||||
# unit tests for coverage.
|
||||
def prompt_for_config(
|
||||
config_type: type[BaseModel], existing_config: Optional[BaseModel] = None
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Recursively prompt the user for configuration values based on a Pydantic BaseModel.
|
||||
|
||||
Args:
|
||||
config_type: A Pydantic BaseModel class representing the configuration structure.
|
||||
|
||||
Returns:
|
||||
An instance of the config_type with user-provided values.
|
||||
"""
|
||||
config_data = {}
|
||||
|
||||
for field_name, field in config_type.__fields__.items():
|
||||
field_type = field.annotation
|
||||
|
||||
existing_value = (
|
||||
getattr(existing_config, field_name) if existing_config else None
|
||||
)
|
||||
if existing_value:
|
||||
default_value = existing_value
|
||||
else:
|
||||
default_value = (
|
||||
field.default if not isinstance(field.default, type(Ellipsis)) else None
|
||||
)
|
||||
is_required = field.required
|
||||
|
||||
# Skip fields with Literal type
|
||||
if get_origin(field_type) is Literal:
|
||||
continue
|
||||
|
||||
if inspect.isclass(field_type) and issubclass(field_type, Enum):
|
||||
prompt = f"Choose {field_name} (options: {', '.join(e.name for e in field_type)}):"
|
||||
while True:
|
||||
# this branch does not handle existing and default values yet
|
||||
user_input = input(prompt + " ")
|
||||
try:
|
||||
config_data[field_name] = field_type[user_input]
|
||||
break
|
||||
except KeyError:
|
||||
print(
|
||||
f"Invalid choice. Please choose from: {', '.join(e.name for e in field_type)}"
|
||||
)
|
||||
continue
|
||||
|
||||
# Check if the field is a discriminated union
|
||||
if get_origin(field_type) is Annotated:
|
||||
inner_type = get_args(field_type)[0]
|
||||
if get_origin(inner_type) is Union:
|
||||
discriminator = field.field_info.discriminator
|
||||
if discriminator:
|
||||
union_types = get_args(inner_type)
|
||||
# Find the discriminator field in each union type
|
||||
type_map = {}
|
||||
for t in union_types:
|
||||
disc_field = t.__fields__[discriminator]
|
||||
literal_values = get_literal_values(disc_field)
|
||||
if literal_values:
|
||||
for value in literal_values:
|
||||
type_map[value] = t
|
||||
|
||||
while True:
|
||||
discriminator_value = input(
|
||||
f"Enter the {discriminator} (options: {', '.join(type_map.keys())}): "
|
||||
)
|
||||
if discriminator_value in type_map:
|
||||
chosen_type = type_map[discriminator_value]
|
||||
print(f"\nConfiguring {chosen_type.__name__}:")
|
||||
|
||||
if existing_value and (
|
||||
getattr(existing_value, discriminator)
|
||||
!= discriminator_value
|
||||
):
|
||||
existing_value = None
|
||||
|
||||
sub_config = prompt_for_config(chosen_type, existing_value)
|
||||
config_data[field_name] = sub_config
|
||||
# Set the discriminator field in the sub-config
|
||||
setattr(sub_config, discriminator, discriminator_value)
|
||||
break
|
||||
else:
|
||||
print(f"Invalid {discriminator}. Please try again.")
|
||||
continue
|
||||
|
||||
if (
|
||||
is_optional(field_type)
|
||||
and inspect.isclass(get_non_none_type(field_type))
|
||||
and issubclass(get_non_none_type(field_type), BaseModel)
|
||||
):
|
||||
prompt = f"Do you want to configure {field_name}? (y/n): "
|
||||
if input(prompt).lower() != "y":
|
||||
config_data[field_name] = None
|
||||
continue
|
||||
nested_type = get_non_none_type(field_type)
|
||||
print(f"Entering sub-configuration for {field_name}:")
|
||||
config_data[field_name] = prompt_for_config(nested_type, existing_value)
|
||||
elif inspect.isclass(field_type) and issubclass(field_type, BaseModel):
|
||||
print(f"\nEntering sub-configuration for {field_name}:")
|
||||
config_data[field_name] = prompt_for_config(
|
||||
field_type,
|
||||
existing_value,
|
||||
)
|
||||
else:
|
||||
prompt = f"Enter value for {field_name}"
|
||||
if existing_value is not None:
|
||||
prompt += f" (existing: {existing_value})"
|
||||
elif default_value is not None:
|
||||
prompt += f" (default: {default_value})"
|
||||
if is_optional(field_type):
|
||||
prompt += " (optional)"
|
||||
elif is_required:
|
||||
prompt += " (required)"
|
||||
prompt += ": "
|
||||
|
||||
while True:
|
||||
user_input = input(prompt)
|
||||
if user_input == "":
|
||||
if default_value is not None:
|
||||
config_data[field_name] = default_value
|
||||
break
|
||||
elif is_optional(field_type) or not is_required:
|
||||
config_data[field_name] = None
|
||||
break
|
||||
else:
|
||||
print("This field is required. Please provide a value.")
|
||||
continue
|
||||
|
||||
try:
|
||||
# Handle Optional types
|
||||
if is_optional(field_type):
|
||||
if user_input.lower() == "none":
|
||||
config_data[field_name] = None
|
||||
break
|
||||
field_type = get_non_none_type(field_type)
|
||||
|
||||
# Handle List of primitives
|
||||
if is_list_of_primitives(field_type):
|
||||
try:
|
||||
value = json.loads(user_input)
|
||||
if not isinstance(value, list):
|
||||
raise ValueError("Input must be a JSON-encoded list")
|
||||
element_type = get_args(field_type)[0]
|
||||
config_data[field_name] = [
|
||||
element_type(item) for item in value
|
||||
]
|
||||
break
|
||||
except json.JSONDecodeError:
|
||||
print(
|
||||
"Invalid JSON. Please enter a valid JSON-encoded list."
|
||||
)
|
||||
continue
|
||||
except ValueError as e:
|
||||
print(f"{str(e)}")
|
||||
continue
|
||||
|
||||
# Convert the input to the correct type
|
||||
if inspect.isclass(field_type) and issubclass(
|
||||
field_type, BaseModel
|
||||
):
|
||||
# For nested BaseModels, we assume a dictionary-like string input
|
||||
import ast
|
||||
|
||||
config_data[field_name] = field_type(
|
||||
**ast.literal_eval(user_input)
|
||||
)
|
||||
else:
|
||||
config_data[field_name] = field_type(user_input)
|
||||
break
|
||||
except ValueError:
|
||||
print(
|
||||
f"Invalid input. Expected type: {getattr(field_type, '__name__', str(field_type))}"
|
||||
)
|
||||
|
||||
return config_type(**config_data)
|
|
@ -4,4 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .inference import InferenceParser # noqa
|
||||
import json
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class EnumEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, Enum):
|
||||
return obj.value
|
||||
return super().default(obj)
|
|
@ -54,7 +54,7 @@ class MetaReferenceInferenceImpl(Inference):
|
|||
|
||||
async def initialize(self) -> None:
|
||||
self.generator = LlamaModelParallelGenerator(self.config)
|
||||
# self.generator.start()
|
||||
self.generator.start()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.generator.stop()
|
||||
|
|
|
@ -1,34 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import os
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
LLAMA_STACK_CONFIG_DIR = os.path.expanduser("~/.llama/")
|
||||
|
||||
DISTRIBS_BASE_DIR = Path(LLAMA_STACK_CONFIG_DIR) / "distributions"
|
||||
|
||||
|
||||
def get_root_directory():
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
while os.path.isfile(os.path.join(current_dir, "__init__.py")):
|
||||
current_dir = os.path.dirname(current_dir)
|
||||
|
||||
return current_dir
|
||||
|
||||
|
||||
def get_default_config_dir():
|
||||
return os.path.join(LLAMA_STACK_CONFIG_DIR, "configs")
|
||||
|
||||
|
||||
class EnumEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, Enum):
|
||||
return obj.value
|
||||
return super().default(obj)
|
Loading…
Add table
Add a link
Reference in a new issue