mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-12 05:54:38 +00:00
chore: refactor (chat)completions endpoints to use shared params struct (#3761)
# What does this PR do? Converts openai(_chat)_completions params to pydantic BaseModel to reduce code duplication across all providers. ## Test Plan CI --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3761). * #3777 * __->__ #3761
This commit is contained in:
parent
6954fe2274
commit
80d58ab519
33 changed files with 599 additions and 890 deletions
|
@ -23,6 +23,7 @@ from llama_stack.strong_typing.inspection import (
|
|||
is_generic_list,
|
||||
is_type_optional,
|
||||
is_type_union,
|
||||
is_unwrapped_body_param,
|
||||
unwrap_generic_list,
|
||||
unwrap_optional_type,
|
||||
unwrap_union_types,
|
||||
|
@ -769,24 +770,30 @@ class Generator:
|
|||
first = next(iter(op.request_params))
|
||||
request_name, request_type = first
|
||||
|
||||
op_name = "".join(word.capitalize() for word in op.name.split("_"))
|
||||
request_name = f"{op_name}Request"
|
||||
fields = [
|
||||
(
|
||||
name,
|
||||
type_,
|
||||
)
|
||||
for name, type_ in op.request_params
|
||||
]
|
||||
request_type = make_dataclass(
|
||||
request_name,
|
||||
fields,
|
||||
namespace={
|
||||
"__doc__": create_docstring_for_request(
|
||||
request_name, fields, doc_params
|
||||
# Special case: if there's a single parameter with Body(embed=False) that's a BaseModel,
|
||||
# unwrap it to show the flat structure in the OpenAPI spec
|
||||
# Example: openai_chat_completion()
|
||||
if (len(op.request_params) == 1 and is_unwrapped_body_param(request_type)):
|
||||
pass
|
||||
else:
|
||||
op_name = "".join(word.capitalize() for word in op.name.split("_"))
|
||||
request_name = f"{op_name}Request"
|
||||
fields = [
|
||||
(
|
||||
name,
|
||||
type_,
|
||||
)
|
||||
},
|
||||
)
|
||||
for name, type_ in op.request_params
|
||||
]
|
||||
request_type = make_dataclass(
|
||||
request_name,
|
||||
fields,
|
||||
namespace={
|
||||
"__doc__": create_docstring_for_request(
|
||||
request_name, fields, doc_params
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
requestBody = RequestBody(
|
||||
content={
|
||||
|
|
|
@ -8,10 +8,11 @@ import json
|
|||
import typing
|
||||
import inspect
|
||||
from pathlib import Path
|
||||
from typing import TextIO
|
||||
from typing import Any, List, Optional, Union, get_type_hints, get_origin, get_args
|
||||
from typing import Any, List, Optional, TextIO, Union, get_type_hints, get_origin, get_args
|
||||
|
||||
from pydantic import BaseModel
|
||||
from llama_stack.strong_typing.schema import object_to_json, StrictJsonType
|
||||
from llama_stack.strong_typing.inspection import is_unwrapped_body_param
|
||||
from llama_stack.core.resolver import api_protocol_map
|
||||
|
||||
from .generator import Generator
|
||||
|
@ -205,6 +206,14 @@ def _validate_has_return_in_docstring(method) -> str | None:
|
|||
def _validate_has_params_in_docstring(method) -> str | None:
|
||||
source = inspect.getsource(method)
|
||||
sig = inspect.signature(method)
|
||||
|
||||
params_list = [p for p in sig.parameters.values() if p.name != "self"]
|
||||
if len(params_list) == 1:
|
||||
param = params_list[0]
|
||||
param_type = param.annotation
|
||||
if is_unwrapped_body_param(param_type):
|
||||
return
|
||||
|
||||
# Only check if the method has more than one parameter
|
||||
if len(sig.parameters) > 1 and ":param" not in source:
|
||||
return "does not have a ':param' in its docstring"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue