temp commit

This commit is contained in:
Botao Chen 2024-12-16 21:43:30 -08:00
parent 30f6eb282f
commit 81e1957446
10 changed files with 54 additions and 39 deletions

0
=0.10.9 Normal file
View file

0
==0.10.9 Normal file
View file

View file

@ -46,8 +46,10 @@ class MetaReferenceInferenceConfig(BaseModel):
return model
@property
def model_parallel_size(self) -> int:
def model_parallel_size(self) -> Optional[int]:
resolved = resolve_model(self.model)
if resolved is None:
return None
return resolved.pth_file_count
@classmethod

View file

@ -25,12 +25,12 @@ from fairscale.nn.model_parallel.initialize import (
)
from llama_models.llama3.api.args import ModelArgs
from llama_models.llama3.api.chat_format import ChatFormat, ModelInput
from llama_models.llama3.api.datatypes import Model
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.llama3.reference_impl.model import Transformer
from llama_models.llama3.reference_impl.multimodal.model import (
CrossAttentionTransformer,
)
from llama_models.sku_list import resolve_model
from pydantic import BaseModel
from llama_stack.apis.inference import * # noqa: F403
@ -53,16 +53,16 @@ from .config import (
log = logging.getLogger(__name__)
def model_checkpoint_dir(model) -> str:
checkpoint_dir = Path(model_local_dir(model.descriptor()))
def model_checkpoint_dir(model_id) -> str:
checkpoint_dir = Path(model_local_dir(model_id))
paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]]
if not any(p.exists() for p in paths):
checkpoint_dir = checkpoint_dir / "original"
assert checkpoint_dir.exists(), (
f"Could not find checkpoints in: {model_local_dir(model.descriptor())}. "
f"Please download model using `llama download --model-id {model.descriptor()}`"
f"Could not find checkpoints in: {model_local_dir(model_id)}. "
f"Please download model using `llama download --model-id {model_id}`"
)
return str(checkpoint_dir)
@ -80,6 +80,7 @@ class Llama:
MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig
],
model_id: str,
llama_model: Model,
):
"""
Build a Llama instance by initializing and loading a model checkpoint.
@ -88,14 +89,16 @@ class Llama:
This method initializes the distributed process group, sets the device to CUDA,
and loads the pre-trained model and tokenizer.
"""
model = resolve_model(model_id)
llama_model = model.core_model_id.value
llama_model_id = llama_model.core_model_id.value
if not torch.distributed.is_initialized():
print("I reach torch.distributed.init_process_group")
torch.distributed.init_process_group("nccl")
model_parallel_size = config.model_parallel_size
model_parallel_size = (
config.model_parallel_size
if config.model_parallel_size
else llama_model.pth_file_count
)
if not model_parallel_is_initialized():
initialize_model_parallel(model_parallel_size)
@ -103,6 +106,8 @@ class Llama:
local_rank = int(os.environ.get("LOCAL_RANK", 0))
torch.cuda.set_device(local_rank)
print("torch.cuda.set_device")
# seed must be the same in all processes
if config.torch_seed is not None:
torch.manual_seed(config.torch_seed)
@ -114,7 +119,7 @@ class Llama:
if config.checkpoint_dir and config.checkpoint_dir != "null":
ckpt_dir = config.checkpoint_dir
else:
ckpt_dir = model_checkpoint_dir(model)
ckpt_dir = model_checkpoint_dir(model_id) # true model id
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
@ -190,7 +195,7 @@ class Llama:
model.load_state_dict(state_dict, strict=False)
log.info(f"Loaded in {time.time() - start_time:.2f} seconds")
return Llama(model, tokenizer, model_args, llama_model)
return Llama(model, tokenizer, model_args, llama_model_id)
def __init__(
self,

View file

@ -46,13 +46,16 @@ class MetaReferenceInferenceImpl(
self.config = config
self.model = None
async def initialize(self, model_id) -> None:
async def initialize(self, model_id, llama_model) -> None:
log.info(f"Loading model `{model_id}`")
if self.config.create_distributed_process_group:
self.generator = LlamaModelParallelGenerator(self.config, model_id)
print("I reach create_distributed_process_group")
self.generator = LlamaModelParallelGenerator(
self.config, model_id, llama_model
)
self.generator.start()
else:
self.generator = Llama.build(self.config, model_id)
self.generator = Llama.build(self.config, model_id, llama_model)
self.model = model_id
@ -65,26 +68,27 @@ class MetaReferenceInferenceImpl(
raise RuntimeError(
"Inference model hasn't been initialized yet, please register your requested model or add your model in the resouces first"
)
inference_model = resolve_model(self.model)
requested_model = resolve_model(request.model)
if requested_model is None:
if request.model is None:
raise RuntimeError(
f"Unknown model: {request.model}, Run `llama model list`"
)
elif requested_model.descriptor() != inference_model.descriptor():
raise RuntimeError(
f"Model mismatch: {request.model} != {inference_model.descriptor()}"
)
elif request.model != self.model:
raise RuntimeError(f"Model mismatch: {request.model} != {self.model}")
async def unregister_model(self, model_id: str) -> None:
pass
async def register_model(self, model: LlamaStackModel) -> LlamaStackModel:
llama_model = resolve_model(model.identifier)
llama_model = (
resolve_model(model.metadata["llama_model"])
if "llama_model" in model.metadata
else resolve_model(model.identifier)
)
if llama_model is None:
raise RuntimeError(
f"Unknown model: {model.identifier}, Please make sure your model is in llama-models SKU list"
"Please make sure your llama_model in model metadata or model identifier is in llama-models SKU list"
)
self.model_registry_helper = ModelRegistryHelper(
[
build_model_alias(
@ -94,6 +98,7 @@ class MetaReferenceInferenceImpl(
],
)
model = await self.model_registry_helper.register_model(model)
if model.model_type == ModelType.embedding:
self._load_sentence_transformer_model(model.provider_resource_id)
@ -103,7 +108,7 @@ class MetaReferenceInferenceImpl(
and model.metadata["skip_initialize"]
):
return model
await self.initialize(model.identifier)
await self.initialize(model.identifier, llama_model)
return model
async def completion(

View file

@ -10,8 +10,8 @@ from functools import partial
from typing import Any, Generator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Model
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from llama_stack.apis.inference import ChatCompletionRequest, CompletionRequest
@ -37,8 +37,9 @@ class ModelRunner:
def init_model_cb(
config: MetaReferenceInferenceConfig,
model_id: str,
llama_model: Model,
):
llama = Llama.build(config, model_id)
llama = Llama.build(config, model_id, llama_model)
return ModelRunner(llama)
@ -57,14 +58,15 @@ class LlamaModelParallelGenerator:
self,
config: MetaReferenceInferenceConfig,
model_id: str,
llama_model: Model,
):
self.config = config
self.model_id = model_id
self.model = resolve_model(model_id)
self.llama_model = llama_model
# this is a hack because Agent's loop uses this to tokenize and check if input is too long
# while the tool-use loop is going
checkpoint_dir = model_checkpoint_dir(self.model)
checkpoint_dir = model_checkpoint_dir(self.model_id)
tokenizer_path = os.path.join(checkpoint_dir, "tokenizer.model")
self.formatter = ChatFormat(Tokenizer(tokenizer_path))
@ -78,11 +80,15 @@ class LlamaModelParallelGenerator:
if self.config.model_parallel_size:
model_parallel_size = self.config.model_parallel_size
else:
model_parallel_size = resolve_model(self.model).pth_file_count
model_parallel_size = self.llama_model.pth_file_count
print(f"model_parallel_size: {model_parallel_size}")
self.group = ModelParallelProcessGroup(
model_parallel_size,
init_model_cb=partial(init_model_cb, self.config, self.model_id),
init_model_cb=partial(
init_model_cb, self.config, self.model_id, self.llama_model
),
)
self.group.start()
return self

View file

@ -300,7 +300,7 @@ def start_model_parallel_process(
main_process_url = request_socket.getsockopt_string(zmq.LAST_ENDPOINT)
ctx = multiprocessing.get_context("fork")
ctx = multiprocessing.get_context("spawn")
process = ctx.Process(
target=launch_dist_group,
args=(

View file

@ -69,7 +69,6 @@ def pytest_generate_tests(metafunc):
else:
params = MODEL_PARAMS
# print("params", params)
metafunc.parametrize(
"inference_model",
params,
@ -83,7 +82,5 @@ def pytest_generate_tests(metafunc):
"inference": INFERENCE_FIXTURES,
},
):
# print("I reach here")
fixtures = [stack.values[0]["inference"] for stack in filtered_stacks]
print("fixtures", fixtures)
metafunc.parametrize("inference_stack", fixtures, indirect=True)

View file

@ -9,8 +9,8 @@ import pytest
# How to run this test:
#
# pytest -v -s llama_stack/providers/tests/inference/test_model_registration.py
# -m "meta_reference"
# torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="Llama3.1-8B-Instruct"
# ./llama_stack/providers/tests/inference/test_model_registration.py
class TestModelRegistration:

View file

@ -75,7 +75,7 @@ metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/registry.db
models: []
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: meta-reference-inference