chore(telemetry): code cleanup (#3897)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 14s
UI Tests / ui-tests (22) (push) Successful in 43s
Pre-commit / pre-commit (push) Successful in 1m35s

# What does this PR do?
Clean up telemetry code since the telemetry API has been remove.
- moved telemetry files out of providers to core
- removed from Api

## Test Plan

❯ OTEL_SERVICE_NAME=llama_stack
OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4318 uv run llama stack run
starter
❯ curl http://localhost:8321/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openai/gpt-4o-mini",
    "messages": [
      {
        "role": "user",
        "content": "Hello!"
      }
    ]
  }'

-> verify traces in Grafana

CI
This commit is contained in:
ehhuang 2025-10-23 23:13:02 -07:00 committed by GitHub
parent 9916cb3b17
commit 8265d4efc8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
37 changed files with 148 additions and 227 deletions

View file

@ -21,7 +21,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutputMessageWebSearchToolCall,
)
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
Metadata = dict[str, str]

View file

@ -117,8 +117,6 @@ class Api(Enum, metaclass=DynamicApiMeta):
post_training = "post_training"
tool_runtime = "tool_runtime"
telemetry = "telemetry"
models = "models"
shields = "shields"
vector_stores = "vector_stores" # only used for routing table

View file

@ -12,7 +12,7 @@ from pydantic import BaseModel, Field
from llama_stack.apis.common.responses import Order
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod

View file

@ -23,6 +23,7 @@ from llama_stack.apis.common.responses import Order
from llama_stack.apis.models import Model
from llama_stack.apis.telemetry import MetricResponseMixin
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.models.llama.datatypes import (
BuiltinTool,
StopReason,
@ -30,7 +31,6 @@ from llama_stack.models.llama.datatypes import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
register_schema(ToolCall)

View file

@ -11,7 +11,7 @@ from pydantic import BaseModel, ConfigDict, Field, field_validator
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod

View file

@ -11,7 +11,7 @@ from typing import Protocol, runtime_checkable
from pydantic import BaseModel, Field, field_validator, model_validator
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod

View file

@ -12,7 +12,7 @@ from pydantic import BaseModel, Field
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.apis.shields import Shield
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod

View file

@ -10,7 +10,7 @@ from pydantic import BaseModel
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod

View file

@ -12,7 +12,7 @@ from typing_extensions import runtime_checkable
from llama_stack.apis.common.content_types import URL, InterleavedContent
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod

View file

@ -13,7 +13,7 @@ from typing_extensions import runtime_checkable
from llama_stack.apis.common.content_types import URL, InterleavedContent
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
from .rag_tool import RAGToolRuntime

View file

@ -17,7 +17,7 @@ from pydantic import BaseModel, Field
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.strong_typing.schema import register_schema

View file

@ -15,10 +15,10 @@ import yaml
from llama_stack.cli.stack.utils import ImageType
from llama_stack.cli.subcommand import Subcommand
from llama_stack.core.datatypes import LoggingConfig, StackRunConfig
from llama_stack.core.datatypes import StackRunConfig
from llama_stack.core.stack import cast_image_name_to_string, replace_env_vars
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
from llama_stack.log import get_logger
from llama_stack.log import LoggingConfig, get_logger
REPO_ROOT = Path(__file__).parent.parent.parent.parent

View file

@ -31,6 +31,7 @@ from llama_stack.core.storage.datatypes import (
StorageBackendType,
StorageConfig,
)
from llama_stack.log import LoggingConfig
from llama_stack.providers.datatypes import Api, ProviderSpec
LLAMA_STACK_BUILD_CONFIG_VERSION = 2
@ -195,14 +196,6 @@ class TelemetryConfig(BaseModel):
enabled: bool = Field(default=False, description="enable or disable telemetry")
class LoggingConfig(BaseModel):
category_levels: dict[str, str] = Field(
default_factory=dict,
description="""
Dictionary of different logging configurations for different portions (ex: core, server) of llama stack""",
)
class OAuth2JWKSConfig(BaseModel):
# The JWKS URI for collecting public keys
uri: str

View file

@ -25,7 +25,7 @@ from llama_stack.providers.datatypes import (
logger = get_logger(name=__name__, category="core")
INTERNAL_APIS = {Api.inspect, Api.providers, Api.prompts, Api.conversations, Api.telemetry}
INTERNAL_APIS = {Api.inspect, Api.providers, Api.prompts, Api.conversations}
def stack_apis() -> list[Api]:

View file

@ -32,7 +32,7 @@ from termcolor import cprint
from llama_stack.core.build import print_pip_install_help
from llama_stack.core.configure import parse_and_maybe_upgrade_config
from llama_stack.core.datatypes import Api, BuildConfig, BuildProvider, DistributionSpec
from llama_stack.core.datatypes import BuildConfig, BuildProvider, DistributionSpec
from llama_stack.core.request_headers import (
PROVIDER_DATA_VAR,
request_provider_data_context,
@ -44,11 +44,12 @@ from llama_stack.core.stack import (
get_stack_run_config_from_distro,
replace_env_vars,
)
from llama_stack.core.telemetry import Telemetry
from llama_stack.core.telemetry.tracing import CURRENT_TRACE_CONTEXT, end_trace, setup_logger, start_trace
from llama_stack.core.utils.config import redact_sensitive_fields
from llama_stack.core.utils.context import preserve_contexts_async_generator
from llama_stack.core.utils.exec import in_notebook
from llama_stack.log import get_logger, setup_logging
from llama_stack.providers.utils.telemetry.tracing import CURRENT_TRACE_CONTEXT, end_trace, setup_logger, start_trace
from llama_stack.strong_typing.inspection import is_unwrapped_body_param
logger = get_logger(name=__name__, category="core")
@ -293,8 +294,8 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
raise _e
assert self.impls is not None
if Api.telemetry in self.impls:
setup_logger(self.impls[Api.telemetry])
if self.config.telemetry.enabled:
setup_logger(Telemetry())
if not os.environ.get("PYTEST_CURRENT_TEST"):
console = Console()

View file

@ -27,7 +27,6 @@ from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
from llama_stack.apis.shields import Shields
from llama_stack.apis.telemetry import Telemetry
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.apis.vector_stores import VectorStore
@ -49,7 +48,6 @@ from llama_stack.providers.datatypes import (
Api,
BenchmarksProtocolPrivate,
DatasetsProtocolPrivate,
InlineProviderSpec,
ModelsProtocolPrivate,
ProviderSpec,
RemoteProviderConfig,
@ -98,7 +96,6 @@ def api_protocol_map(external_apis: dict[Api, ExternalApiSpec] | None = None) ->
Api.files: Files,
Api.prompts: Prompts,
Api.conversations: Conversations,
Api.telemetry: Telemetry,
}
if external_apis:
@ -241,24 +238,6 @@ def validate_and_prepare_providers(
key = api_str if api not in router_apis else f"inner-{api_str}"
providers_with_specs[key] = specs
# TODO: remove this logic, telemetry should not have providers.
# if telemetry has been enabled in the config initialize our internal impl
# telemetry is not an external API so it SHOULD NOT be auto-routed.
if run_config.telemetry.enabled:
specs = {}
p = InlineProviderSpec(
api=Api.telemetry,
provider_type="inline::meta-reference",
pip_packages=[],
optional_api_dependencies=[Api.datasetio],
module="llama_stack.providers.inline.telemetry.meta_reference",
config_class="llama_stack.providers.inline.telemetry.meta_reference.config.TelemetryConfig",
description="Meta's reference implementation of telemetry and observability using OpenTelemetry.",
)
spec = ProviderWithSpec(spec=p, provider_type="inline::meta-reference", provider_id="meta-reference")
specs["meta-reference"] = spec
providers_with_specs["telemetry"] = specs
return providers_with_specs

View file

@ -72,14 +72,6 @@ async def get_auto_router_impl(
raise ValueError(f"API {api.value} not found in router map")
api_to_dep_impl = {}
if run_config.telemetry.enabled:
api_to_deps = {
"inference": {"telemetry": Api.telemetry},
}
for dep_name, dep_api in api_to_deps.get(api.value, {}).items():
if dep_api in deps:
api_to_dep_impl[dep_name] = deps[dep_api]
# TODO: move pass configs to routers instead
if api == Api.inference:
inference_ref = run_config.storage.stores.inference
@ -92,6 +84,7 @@ async def get_auto_router_impl(
)
await inference_store.initialize()
api_to_dep_impl["store"] = inference_store
api_to_dep_impl["telemetry_enabled"] = run_config.telemetry.enabled
elif api == Api.vector_io:
api_to_dep_impl["vector_stores_config"] = run_config.vector_stores

View file

@ -53,13 +53,13 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletionContentPartTextParam,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse
from llama_stack.core.telemetry.tracing import enqueue_event, get_current_span
from llama_stack.log import get_logger
from llama_stack.models.llama.llama3.chat_format import ChatFormat
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable
from llama_stack.providers.utils.inference.inference_store import InferenceStore
from llama_stack.providers.utils.telemetry.tracing import enqueue_event, get_current_span
logger = get_logger(name=__name__, category="core::routers")
@ -70,14 +70,14 @@ class InferenceRouter(Inference):
def __init__(
self,
routing_table: RoutingTable,
telemetry: Telemetry | None = None,
store: InferenceStore | None = None,
telemetry_enabled: bool = False,
) -> None:
logger.debug("Initializing InferenceRouter")
self.routing_table = routing_table
self.telemetry = telemetry
self.telemetry_enabled = telemetry_enabled
self.store = store
if self.telemetry:
if self.telemetry_enabled:
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
@ -159,7 +159,7 @@ class InferenceRouter(Inference):
model: Model,
) -> list[MetricInResponse]:
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
if self.telemetry:
if self.telemetry_enabled:
for metric in metrics:
enqueue_event(metric)
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
@ -223,7 +223,7 @@ class InferenceRouter(Inference):
# that we do not return an AsyncIterator, our tests expect a stream of chunks we cannot intercept currently.
response = await provider.openai_completion(params)
if self.telemetry:
if self.telemetry_enabled:
metrics = self._construct_metrics(
prompt_tokens=response.usage.prompt_tokens,
completion_tokens=response.usage.completion_tokens,
@ -285,7 +285,7 @@ class InferenceRouter(Inference):
if self.store:
asyncio.create_task(self.store.store_chat_completion(response, params.messages))
if self.telemetry:
if self.telemetry_enabled:
metrics = self._construct_metrics(
prompt_tokens=response.usage.prompt_tokens,
completion_tokens=response.usage.completion_tokens,
@ -393,7 +393,7 @@ class InferenceRouter(Inference):
else:
if hasattr(chunk, "delta"):
completion_text += chunk.delta
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry:
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry_enabled:
complete = True
completion_tokens = await self._count_tokens(completion_text)
# if we are done receiving tokens
@ -401,7 +401,7 @@ class InferenceRouter(Inference):
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
# Create a separate span for streaming completion metrics
if self.telemetry:
if self.telemetry_enabled:
# Log metrics in the new span context
completion_metrics = self._construct_metrics(
prompt_tokens=prompt_tokens,
@ -450,7 +450,7 @@ class InferenceRouter(Inference):
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
# Create a separate span for completion metrics
if self.telemetry:
if self.telemetry_enabled:
# Log metrics in the new span context
completion_metrics = self._construct_metrics(
prompt_tokens=prompt_tokens,
@ -548,7 +548,7 @@ class InferenceRouter(Inference):
completion_text += "".join(choice_data["content_parts"])
# Add metrics to the chunk
if self.telemetry and hasattr(chunk, "usage") and chunk.usage:
if self.telemetry_enabled and hasattr(chunk, "usage") and chunk.usage:
metrics = self._construct_metrics(
prompt_tokens=chunk.usage.prompt_tokens,
completion_tokens=chunk.usage.completion_tokens,

View file

@ -36,7 +36,6 @@ from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.core.access_control.access_control import AccessDeniedError
from llama_stack.core.datatypes import (
AuthenticationRequiredError,
LoggingConfig,
StackRunConfig,
process_cors_config,
)
@ -53,19 +52,13 @@ from llama_stack.core.stack import (
cast_image_name_to_string,
replace_env_vars,
)
from llama_stack.core.telemetry import Telemetry
from llama_stack.core.telemetry.tracing import CURRENT_TRACE_CONTEXT, setup_logger
from llama_stack.core.utils.config import redact_sensitive_fields
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
from llama_stack.core.utils.context import preserve_contexts_async_generator
from llama_stack.log import get_logger, setup_logging
from llama_stack.log import LoggingConfig, get_logger, setup_logging
from llama_stack.providers.datatypes import Api
from llama_stack.providers.inline.telemetry.meta_reference.config import TelemetryConfig
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import (
TelemetryAdapter,
)
from llama_stack.providers.utils.telemetry.tracing import (
CURRENT_TRACE_CONTEXT,
setup_logger,
)
from .auth import AuthenticationMiddleware
from .quota import QuotaMiddleware
@ -451,9 +444,7 @@ def create_app() -> StackApp:
app.add_middleware(CORSMiddleware, **cors_config.model_dump())
if config.telemetry.enabled:
setup_logger(impls[Api.telemetry])
else:
setup_logger(TelemetryAdapter(TelemetryConfig(), {}))
setup_logger(Telemetry())
# Load external APIs if configured
external_apis = load_external_apis(config)
@ -511,7 +502,8 @@ def create_app() -> StackApp:
app.exception_handler(RequestValidationError)(global_exception_handler)
app.exception_handler(Exception)(global_exception_handler)
app.add_middleware(TracingMiddleware, impls=impls, external_apis=external_apis)
if config.telemetry.enabled:
app.add_middleware(TracingMiddleware, impls=impls, external_apis=external_apis)
return app

View file

@ -7,8 +7,8 @@ from aiohttp import hdrs
from llama_stack.core.external import ExternalApiSpec
from llama_stack.core.server.routes import find_matching_route, initialize_route_impls
from llama_stack.core.telemetry.tracing import end_trace, start_trace
from llama_stack.log import get_logger
from llama_stack.providers.utils.telemetry.tracing import end_trace, start_trace
logger = get_logger(name=__name__, category="core::server")

View file

@ -0,0 +1,32 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .telemetry import Telemetry
from .trace_protocol import serialize_value, trace_protocol
from .tracing import (
CURRENT_TRACE_CONTEXT,
ROOT_SPAN_MARKERS,
end_trace,
enqueue_event,
get_current_span,
setup_logger,
span,
start_trace,
)
__all__ = [
"Telemetry",
"trace_protocol",
"serialize_value",
"CURRENT_TRACE_CONTEXT",
"ROOT_SPAN_MARKERS",
"end_trace",
"enqueue_event",
"get_current_span",
"setup_logger",
"span",
"start_trace",
]

View file

@ -24,14 +24,13 @@ from llama_stack.apis.telemetry import (
SpanStartPayload,
SpanStatus,
StructuredLogEvent,
Telemetry,
UnstructuredLogEvent,
)
from llama_stack.core.datatypes import Api
from llama_stack.apis.telemetry import (
Telemetry as TelemetryBase,
)
from llama_stack.core.telemetry.tracing import ROOT_SPAN_MARKERS
from llama_stack.log import get_logger
from llama_stack.providers.utils.telemetry.tracing import ROOT_SPAN_MARKERS
from .config import TelemetryConfig
_GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
"active_spans": {},
@ -50,9 +49,8 @@ def is_tracing_enabled(tracer):
return span.is_recording()
class TelemetryAdapter(Telemetry):
def __init__(self, _config: TelemetryConfig, deps: dict[Api, Any]) -> None:
self.datasetio_api = deps.get(Api.datasetio)
class Telemetry(TelemetryBase):
def __init__(self) -> None:
self.meter = None
global _TRACER_PROVIDER

View file

@ -9,27 +9,29 @@ import inspect
import json
from collections.abc import AsyncGenerator, Callable
from functools import wraps
from typing import Any
from typing import Any, cast
from pydantic import BaseModel
from llama_stack.models.llama.datatypes import Primitive
type JSONValue = Primitive | list["JSONValue"] | dict[str, "JSONValue"]
def serialize_value(value: Any) -> Primitive:
def serialize_value(value: Any) -> str:
return str(_prepare_for_json(value))
def _prepare_for_json(value: Any) -> str:
def _prepare_for_json(value: Any) -> JSONValue:
"""Serialize a single value into JSON-compatible format."""
if value is None:
return ""
elif isinstance(value, str | int | float | bool):
return value
elif hasattr(value, "_name_"):
return value._name_
return cast(str, value._name_)
elif isinstance(value, BaseModel):
return json.loads(value.model_dump_json())
return cast(JSONValue, json.loads(value.model_dump_json()))
elif isinstance(value, list | tuple | set):
return [_prepare_for_json(item) for item in value]
elif isinstance(value, dict):
@ -37,35 +39,35 @@ def _prepare_for_json(value: Any) -> str:
else:
try:
json.dumps(value)
return value
return cast(JSONValue, value)
except Exception:
return str(value)
def trace_protocol[T](cls: type[T]) -> type[T]:
def trace_protocol[T: type[Any]](cls: T) -> T:
"""
A class decorator that automatically traces all methods in a protocol/base class
and its inheriting classes.
"""
def trace_method(method: Callable) -> Callable:
def trace_method(method: Callable[..., Any]) -> Callable[..., Any]:
is_async = asyncio.iscoroutinefunction(method)
is_async_gen = inspect.isasyncgenfunction(method)
def create_span_context(self: Any, *args: Any, **kwargs: Any) -> tuple:
def create_span_context(self: Any, *args: Any, **kwargs: Any) -> tuple[str, str, dict[str, Primitive]]:
class_name = self.__class__.__name__
method_name = method.__name__
span_type = "async_generator" if is_async_gen else "async" if is_async else "sync"
sig = inspect.signature(method)
param_names = list(sig.parameters.keys())[1:] # Skip 'self'
combined_args = {}
combined_args: dict[str, str] = {}
for i, arg in enumerate(args):
param_name = param_names[i] if i < len(param_names) else f"position_{i + 1}"
combined_args[param_name] = serialize_value(arg)
for k, v in kwargs.items():
combined_args[str(k)] = serialize_value(v)
span_attributes = {
span_attributes: dict[str, Primitive] = {
"__autotraced__": True,
"__class__": class_name,
"__method__": method_name,
@ -76,8 +78,8 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
return class_name, method_name, span_attributes
@wraps(method)
async def async_gen_wrapper(self: Any, *args: Any, **kwargs: Any) -> AsyncGenerator:
from llama_stack.providers.utils.telemetry import tracing
async def async_gen_wrapper(self: Any, *args: Any, **kwargs: Any) -> AsyncGenerator[Any, None]:
from llama_stack.core.telemetry import tracing
class_name, method_name, span_attributes = create_span_context(self, *args, **kwargs)
@ -92,7 +94,7 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
@wraps(method)
async def async_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
from llama_stack.providers.utils.telemetry import tracing
from llama_stack.core.telemetry import tracing
class_name, method_name, span_attributes = create_span_context(self, *args, **kwargs)
@ -107,7 +109,7 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
@wraps(method)
def sync_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
from llama_stack.providers.utils.telemetry import tracing
from llama_stack.core.telemetry import tracing
class_name, method_name, span_attributes = create_span_context(self, *args, **kwargs)
@ -127,16 +129,17 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
else:
return sync_wrapper
original_init_subclass = getattr(cls, "__init_subclass__", None)
original_init_subclass = cast(Callable[..., Any] | None, getattr(cls, "__init_subclass__", None))
def __init_subclass__(cls_child, **kwargs): # noqa: N807
def __init_subclass__(cls_child: type[Any], **kwargs: Any) -> None: # noqa: N807
if original_init_subclass:
original_init_subclass(**kwargs)
cast(Callable[..., None], original_init_subclass)(**kwargs)
for name, method in vars(cls_child).items():
if inspect.isfunction(method) and not name.startswith("_"):
setattr(cls_child, name, trace_method(method)) # noqa: B010
cls.__init_subclass__ = classmethod(__init_subclass__)
cls_any = cast(Any, cls)
cls_any.__init_subclass__ = classmethod(__init_subclass__)
return cls

View file

@ -15,7 +15,7 @@ import time
from collections.abc import Callable
from datetime import UTC, datetime
from functools import wraps
from typing import Any
from typing import Any, Self
from llama_stack.apis.telemetry import (
Event,
@ -28,8 +28,8 @@ from llama_stack.apis.telemetry import (
Telemetry,
UnstructuredLogEvent,
)
from llama_stack.core.telemetry.trace_protocol import serialize_value
from llama_stack.log import get_logger
from llama_stack.providers.utils.telemetry.trace_protocol import serialize_value
logger = get_logger(__name__, category="core")
@ -89,9 +89,6 @@ def generate_trace_id() -> str:
return trace_id_to_str(trace_id)
CURRENT_TRACE_CONTEXT = contextvars.ContextVar("trace_context", default=None)
BACKGROUND_LOGGER = None
LOG_QUEUE_FULL_LOG_INTERVAL_SECONDS = 60.0
@ -104,7 +101,7 @@ class BackgroundLogger:
self._last_queue_full_log_time: float = 0.0
self._dropped_since_last_notice: int = 0
def log_event(self, event):
def log_event(self, event: Event) -> None:
try:
self.log_queue.put_nowait(event)
except queue.Full:
@ -137,10 +134,13 @@ class BackgroundLogger:
finally:
self.log_queue.task_done()
def __del__(self):
def __del__(self) -> None:
self.log_queue.join()
BACKGROUND_LOGGER: BackgroundLogger | None = None
def enqueue_event(event: Event) -> None:
"""Enqueue a telemetry event to the background logger if available.
@ -155,13 +155,12 @@ def enqueue_event(event: Event) -> None:
class TraceContext:
spans: list[Span] = []
def __init__(self, logger: BackgroundLogger, trace_id: str):
self.logger = logger
self.trace_id = trace_id
self.spans: list[Span] = []
def push_span(self, name: str, attributes: dict[str, Any] = None) -> Span:
def push_span(self, name: str, attributes: dict[str, Any] | None = None) -> Span:
current_span = self.get_current_span()
span = Span(
span_id=generate_span_id(),
@ -188,7 +187,7 @@ class TraceContext:
self.spans.append(span)
return span
def pop_span(self, status: SpanStatus = SpanStatus.OK):
def pop_span(self, status: SpanStatus = SpanStatus.OK) -> None:
span = self.spans.pop()
if span is not None:
self.logger.log_event(
@ -203,10 +202,15 @@ class TraceContext:
)
)
def get_current_span(self):
def get_current_span(self) -> Span | None:
return self.spans[-1] if self.spans else None
CURRENT_TRACE_CONTEXT: contextvars.ContextVar[TraceContext | None] = contextvars.ContextVar(
"trace_context", default=None
)
def setup_logger(api: Telemetry, level: int = logging.INFO):
global BACKGROUND_LOGGER
@ -217,12 +221,12 @@ def setup_logger(api: Telemetry, level: int = logging.INFO):
root_logger.addHandler(TelemetryHandler())
async def start_trace(name: str, attributes: dict[str, Any] = None) -> TraceContext:
async def start_trace(name: str, attributes: dict[str, Any] | None = None) -> TraceContext | None:
global CURRENT_TRACE_CONTEXT, BACKGROUND_LOGGER
if BACKGROUND_LOGGER is None:
logger.debug("No Telemetry implementation set. Skipping trace initialization...")
return
return None
trace_id = generate_trace_id()
context = TraceContext(BACKGROUND_LOGGER, trace_id)
@ -269,7 +273,7 @@ def severity(levelname: str) -> LogSeverity:
# TODO: ideally, the actual emitting should be done inside a separate daemon
# process completely isolated from the server
class TelemetryHandler(logging.Handler):
def emit(self, record: logging.LogRecord):
def emit(self, record: logging.LogRecord) -> None:
# horrendous hack to avoid logging from asyncio and getting into an infinite loop
if record.module in ("asyncio", "selector_events"):
return
@ -293,17 +297,17 @@ class TelemetryHandler(logging.Handler):
)
)
def close(self):
def close(self) -> None:
pass
class SpanContextManager:
def __init__(self, name: str, attributes: dict[str, Any] = None):
def __init__(self, name: str, attributes: dict[str, Any] | None = None):
self.name = name
self.attributes = attributes
self.span = None
self.span: Span | None = None
def __enter__(self):
def __enter__(self) -> Self:
global CURRENT_TRACE_CONTEXT
context = CURRENT_TRACE_CONTEXT.get()
if not context:
@ -313,7 +317,7 @@ class SpanContextManager:
self.span = context.push_span(self.name, self.attributes)
return self
def __exit__(self, exc_type, exc_value, traceback):
def __exit__(self, exc_type, exc_value, traceback) -> None:
global CURRENT_TRACE_CONTEXT
context = CURRENT_TRACE_CONTEXT.get()
if not context:
@ -322,13 +326,13 @@ class SpanContextManager:
context.pop_span()
def set_attribute(self, key: str, value: Any):
def set_attribute(self, key: str, value: Any) -> None:
if self.span:
if self.span.attributes is None:
self.span.attributes = {}
self.span.attributes[key] = serialize_value(value)
async def __aenter__(self):
async def __aenter__(self) -> Self:
global CURRENT_TRACE_CONTEXT
context = CURRENT_TRACE_CONTEXT.get()
if not context:
@ -338,7 +342,7 @@ class SpanContextManager:
self.span = context.push_span(self.name, self.attributes)
return self
async def __aexit__(self, exc_type, exc_value, traceback):
async def __aexit__(self, exc_type, exc_value, traceback) -> None:
global CURRENT_TRACE_CONTEXT
context = CURRENT_TRACE_CONTEXT.get()
if not context:
@ -347,19 +351,19 @@ class SpanContextManager:
context.pop_span()
def __call__(self, func: Callable):
def __call__(self, func: Callable[..., Any]) -> Callable[..., Any]:
@wraps(func)
def sync_wrapper(*args, **kwargs):
def sync_wrapper(*args: Any, **kwargs: Any) -> Any:
with self:
return func(*args, **kwargs)
@wraps(func)
async def async_wrapper(*args, **kwargs):
async def async_wrapper(*args: Any, **kwargs: Any) -> Any:
async with self:
return await func(*args, **kwargs)
@wraps(func)
def wrapper(*args, **kwargs):
def wrapper(*args: Any, **kwargs: Any) -> Any:
if asyncio.iscoroutinefunction(func):
return async_wrapper(*args, **kwargs)
else:
@ -368,7 +372,7 @@ class SpanContextManager:
return wrapper
def span(name: str, attributes: dict[str, Any] = None):
def span(name: str, attributes: dict[str, Any] | None = None) -> SpanContextManager:
return SpanContextManager(name, attributes)

View file

@ -9,15 +9,23 @@ import os
import re
from logging.config import dictConfig # allow-direct-logging
from pydantic import BaseModel, Field
from rich.console import Console
from rich.errors import MarkupError
from rich.logging import RichHandler
from llama_stack.core.datatypes import LoggingConfig
# Default log level
DEFAULT_LOG_LEVEL = logging.INFO
class LoggingConfig(BaseModel):
category_levels: dict[str, str] = Field(
default_factory=dict,
description="""
Dictionary of different logging configurations for different portions (ex: core, server) of llama stack""",
)
# Predefined categories
CATEGORIES = [
"core",

View file

@ -67,6 +67,7 @@ from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.datatypes import AccessRule
from llama_stack.core.telemetry import tracing
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import (
BuiltinTool,
@ -78,7 +79,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
convert_tooldef_to_openai_tool,
)
from llama_stack.providers.utils.kvstore import KVStore
from llama_stack.providers.utils.telemetry import tracing
from .persistence import AgentPersistence
from .safety import SafetyException, ShieldRunnerMixin

View file

@ -65,9 +65,9 @@ from llama_stack.apis.inference import (
OpenAIChoice,
OpenAIMessageParam,
)
from llama_stack.core.telemetry import tracing
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
from llama_stack.providers.utils.telemetry import tracing
from .types import ChatCompletionContext, ChatCompletionResult
from .utils import (

View file

@ -37,8 +37,8 @@ from llama_stack.apis.inference import (
)
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.telemetry import tracing
from llama_stack.log import get_logger
from llama_stack.providers.utils.telemetry import tracing
from .types import ChatCompletionContext, ToolExecutionResult

View file

@ -8,8 +8,8 @@ import asyncio
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import Safety, SafetyViolation, ViolationLevel
from llama_stack.core.telemetry import tracing
from llama_stack.log import get_logger
from llama_stack.providers.utils.telemetry import tracing
log = get_logger(name=__name__, category="agents::meta_reference")

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,21 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.core.datatypes import Api
from .config import TelemetryConfig, TelemetrySink
__all__ = ["TelemetryConfig", "TelemetrySink"]
async def get_provider_impl(config: TelemetryConfig, deps: dict[Api, Any]):
from .telemetry import TelemetryAdapter
impl = TelemetryAdapter(config, deps)
await impl.initialize()
return impl

View file

@ -1,47 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import StrEnum
from typing import Any
from pydantic import BaseModel, Field, field_validator
class TelemetrySink(StrEnum):
OTEL_TRACE = "otel_trace"
OTEL_METRIC = "otel_metric"
CONSOLE = "console"
class TelemetryConfig(BaseModel):
otel_exporter_otlp_endpoint: str | None = Field(
default=None,
description="The OpenTelemetry collector endpoint URL (base URL for traces, metrics, and logs). If not set, the SDK will use OTEL_EXPORTER_OTLP_ENDPOINT environment variable.",
)
service_name: str = Field(
# service name is always the same, use zero-width space to avoid clutter
default="\u200b",
description="The service name to use for telemetry",
)
sinks: list[TelemetrySink] = Field(
default_factory=list,
description="List of telemetry sinks to enable (possible values: otel_trace, otel_metric, console)",
)
@field_validator("sinks", mode="before")
@classmethod
def validate_sinks(cls, v):
if isinstance(v, str):
return [TelemetrySink(sink.strip()) for sink in v.split(",")]
return v or []
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"service_name": "${env.OTEL_SERVICE_NAME:=\u200b}",
"sinks": "${env.TELEMETRY_SINKS:=}",
"otel_exporter_otlp_endpoint": "${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}",
}

View file

@ -22,11 +22,11 @@ from llama_stack.apis.inference.inference import (
)
from llama_stack.apis.models import Model
from llama_stack.apis.models.models import ModelType
from llama_stack.core.telemetry.tracing import get_current_span
from llama_stack.log import get_logger
from llama_stack.providers.remote.inference.watsonx.config import WatsonXConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
from llama_stack.providers.utils.telemetry.tracing import get_current_span
logger = get_logger(name=__name__, category="providers::remote::watsonx")

View file

@ -256,7 +256,7 @@ class LiteLLMOpenAIMixin(
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
# Add usage tracking for streaming when telemetry is active
from llama_stack.providers.utils.telemetry.tracing import get_current_span
from llama_stack.core.telemetry.tracing import get_current_span
stream_options = params.stream_options
if params.stream and get_current_span() is not None:

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -23,7 +23,7 @@ from opentelemetry.sdk.trace import ReadableSpan, TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
import llama_stack.providers.inline.telemetry.meta_reference.telemetry as telemetry_module
import llama_stack.core.telemetry.telemetry as telemetry_module
from llama_stack.testing.api_recorder import patch_httpx_for_test_id
from tests.integration.fixtures.common import instantiate_llama_stack_client

View file

@ -196,8 +196,6 @@ class TestProviderRegistry:
assert internal_api not in apis, f"Internal API {internal_api} should not be in providable_apis"
for api in apis:
if api == Api.telemetry:
continue
module_name = f"llama_stack.providers.registry.{api.name.lower()}"
try:
importlib.import_module(module_name)