mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat: Add ChunkMetadata to Chunk (#2497)
# What does this PR do? Adding `ChunkMetadata` so we can properly delete embeddings later. More specifically, this PR refactors and extends the chunk metadata handling in the vector database and introduces a distinction between metadata used for model context and backend-only metadata required for chunk management, storage, and retrieval. It also improves chunk ID generation and propagation throughout the stack, enhances test coverage, and adds new utility modules. ```python class ChunkMetadata(BaseModel): """ `ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that will NOT be inserted into the context during inference, but is required for backend functionality. Use `metadata` in `Chunk` for metadata that will be used during inference. """ document_id: str | None = None chunk_id: str | None = None source: str | None = None created_timestamp: int | None = None updated_timestamp: int | None = None chunk_window: str | None = None chunk_tokenizer: str | None = None chunk_embedding_model: str | None = None chunk_embedding_dimension: int | None = None content_token_count: int | None = None metadata_token_count: int | None = None ``` Eventually we can migrate the document_id out of the `metadata` field. I've introduced the changes so that `ChunkMetadata` is backwards compatible with `metadata`. <!-- If resolving an issue, uncomment and update the line below --> Closes https://github.com/meta-llama/llama-stack/issues/2501 ## Test Plan Added unit tests --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
fa0b0c13d4
commit
82f13fe83e
14 changed files with 490 additions and 218 deletions
|
@ -9,7 +9,7 @@ import random
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.vector_io import Chunk
|
||||
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
|
||||
|
||||
EMBEDDING_DIMENSION = 384
|
||||
|
||||
|
@ -33,6 +33,20 @@ def sample_chunks():
|
|||
for j in range(k)
|
||||
for i in range(n)
|
||||
]
|
||||
sample.extend(
|
||||
[
|
||||
Chunk(
|
||||
content=f"Sentence {i} from document {j + k}",
|
||||
chunk_metadata=ChunkMetadata(
|
||||
document_id=f"document-{j + k}",
|
||||
chunk_id=f"document-{j}-chunk-{i}",
|
||||
source=f"example source-{j + k}-{i}",
|
||||
),
|
||||
)
|
||||
for j in range(k)
|
||||
for i in range(n)
|
||||
]
|
||||
)
|
||||
return sample
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue