Merge branch 'meta-llama:main' into dell-distro

This commit is contained in:
Chacksu 2025-08-12 12:13:06 -04:00 committed by GitHub
commit 839cc911ac
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
42 changed files with 786 additions and 186 deletions

View file

@ -62,3 +62,13 @@ class SessionNotFoundError(ValueError):
def __init__(self, session_name: str) -> None:
message = f"Session '{session_name}' not found or access denied."
super().__init__(message)
class ModelTypeError(TypeError):
"""raised when a model is present but not the correct type"""
def __init__(self, model_name: str, model_type: str, expected_model_type: str) -> None:
message = (
f"Model '{model_name}' is of type '{model_type}' rather than the expected type '{expected_model_type}'"
)
super().__init__(message)

View file

@ -18,7 +18,7 @@ from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.common.errors import ModelNotFoundError
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
from llama_stack.apis.inference import (
BatchChatCompletionResponse,
BatchCompletionResponse,
@ -177,6 +177,15 @@ class InferenceRouter(Inference):
encoded = self.formatter.encode_content(messages)
return len(encoded.tokens) if encoded and encoded.tokens else 0
async def _get_model(self, model_id: str, expected_model_type: str) -> Model:
"""takes a model id and gets model after ensuring that it is accessible and of the correct type"""
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type != expected_model_type:
raise ModelTypeError(model_id, model.model_type, expected_model_type)
return model
async def chat_completion(
self,
model_id: str,
@ -195,11 +204,7 @@ class InferenceRouter(Inference):
)
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.embedding:
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
model = await self._get_model(model_id, ModelType.llm)
if tool_config:
if tool_choice and tool_choice != tool_config.tool_choice:
raise ValueError("tool_choice and tool_config.tool_choice must match")
@ -301,11 +306,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.completion: {model_id=}, {stream=}, {content=}, {sampling_params=}, {response_format=}",
)
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.embedding:
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
model = await self._get_model(model_id, ModelType.llm)
provider = await self.routing_table.get_provider_impl(model_id)
params = dict(
model_id=model_id,
@ -355,11 +356,7 @@ class InferenceRouter(Inference):
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
logger.debug(f"InferenceRouter.embeddings: {model_id}")
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.llm:
raise ValueError(f"Model '{model_id}' is an LLM model and does not support embeddings")
await self._get_model(model_id, ModelType.embedding)
provider = await self.routing_table.get_provider_impl(model_id)
return await provider.embeddings(
model_id=model_id,
@ -395,12 +392,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ModelNotFoundError(model)
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support completions")
model_obj = await self._get_model(model, ModelType.llm)
params = dict(
model=model_obj.identifier,
prompt=prompt,
@ -476,11 +468,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ModelNotFoundError(model)
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
model_obj = await self._get_model(model, ModelType.llm)
# Use the OpenAI client for a bit of extra input validation without
# exposing the OpenAI client itself as part of our API surface
@ -567,12 +555,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.openai_embeddings: {model=}, input_type={type(input)}, {encoding_format=}, {dimensions=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ModelNotFoundError(model)
if model_obj.model_type != ModelType.embedding:
raise ValueError(f"Model '{model}' is not an embedding model")
model_obj = await self._get_model(model, ModelType.embedding)
params = dict(
model=model_obj.identifier,
input=input,

View file

@ -124,10 +124,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
return toolgroup
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
tool_group = await self.get_tool_group(toolgroup_id)
if tool_group is None:
raise ToolGroupNotFoundError(toolgroup_id)
await self.unregister_object(tool_group)
await self.unregister_object(await self.get_tool_group(toolgroup_id))
async def shutdown(self) -> None:
pass

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import TypeAdapter
from llama_stack.apis.common.errors import ModelNotFoundError, VectorStoreNotFoundError
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError, VectorStoreNotFoundError
from llama_stack.apis.models import ModelType
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
@ -66,7 +66,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
if model is None:
raise ModelNotFoundError(embedding_model)
if model.model_type != ModelType.embedding:
raise ValueError(f"Model {embedding_model} is not an embedding model")
raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding)
if "embedding_dimension" not in model.metadata:
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
vector_db_data = {

View file

@ -14,6 +14,7 @@ distribution_spec:
- provider_type: remote::openai
- provider_type: remote::anthropic
- provider_type: remote::gemini
- provider_type: remote::vertexai
- provider_type: remote::groq
- provider_type: remote::sambanova
- provider_type: inline::sentence-transformers

View file

@ -65,6 +65,11 @@ providers:
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:=}
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
provider_type: remote::vertexai
config:
project: ${env.VERTEX_AI_PROJECT:=}
location: ${env.VERTEX_AI_LOCATION:=us-central1}
- provider_id: groq
provider_type: remote::groq
config:

View file

@ -14,6 +14,7 @@ distribution_spec:
- provider_type: remote::openai
- provider_type: remote::anthropic
- provider_type: remote::gemini
- provider_type: remote::vertexai
- provider_type: remote::groq
- provider_type: remote::sambanova
- provider_type: inline::sentence-transformers

View file

@ -65,6 +65,11 @@ providers:
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:=}
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
provider_type: remote::vertexai
config:
project: ${env.VERTEX_AI_PROJECT:=}
location: ${env.VERTEX_AI_LOCATION:=us-central1}
- provider_id: groq
provider_type: remote::groq
config:

View file

@ -56,6 +56,7 @@ ENABLED_INFERENCE_PROVIDERS = [
"fireworks",
"together",
"gemini",
"vertexai",
"groq",
"sambanova",
"anthropic",
@ -71,6 +72,7 @@ INFERENCE_PROVIDER_IDS = {
"tgi": "${env.TGI_URL:+tgi}",
"cerebras": "${env.CEREBRAS_API_KEY:+cerebras}",
"nvidia": "${env.NVIDIA_API_KEY:+nvidia}",
"vertexai": "${env.VERTEX_AI_PROJECT:+vertexai}",
}
@ -246,6 +248,14 @@ def get_distribution_template() -> DistributionTemplate:
"",
"Gemini API Key",
),
"VERTEX_AI_PROJECT": (
"",
"Google Cloud Project ID for Vertex AI",
),
"VERTEX_AI_LOCATION": (
"us-central1",
"Google Cloud Location for Vertex AI",
),
"SAMBANOVA_API_KEY": (
"",
"SambaNova API Key",

View file

@ -99,7 +99,8 @@ def parse_environment_config(env_config: str) -> dict[str, int]:
Dict[str, int]: A dictionary mapping categories to their log levels.
"""
category_levels = {}
for pair in env_config.split(";"):
delimiter = ","
for pair in env_config.split(delimiter):
if not pair.strip():
continue

View file

@ -15,6 +15,7 @@ from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
SafetyViolation,
ShieldStore,
ViolationLevel,
)
from llama_stack.apis.shields import Shield
@ -32,6 +33,8 @@ PROMPT_GUARD_MODEL = "Prompt-Guard-86M"
class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
shield_store: ShieldStore
def __init__(self, config: PromptGuardConfig, _deps) -> None:
self.config = config
@ -53,7 +56,7 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
self,
shield_id: str,
messages: list[Message],
params: dict[str, Any] = None,
params: dict[str, Any],
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
if not shield:
@ -61,6 +64,9 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
return await self.shield.run(messages)
async def run_moderation(self, input: str | list[str], model: str):
raise NotImplementedError("run_moderation not implemented for PromptGuard")
class PromptGuardShield:
def __init__(
@ -117,8 +123,10 @@ class PromptGuardShield:
elif self.config.guard_type == PromptGuardType.jailbreak.value and score_malicious > self.threshold:
violation = SafetyViolation(
violation_level=ViolationLevel.ERROR,
violation_type=f"prompt_injection:malicious={score_malicious}",
violation_return_message="Sorry, I cannot do this.",
user_message="Sorry, I cannot do this.",
metadata={
"violation_type": f"prompt_injection:malicious={score_malicious}",
},
)
return RunShieldResponse(violation=violation)

View file

@ -174,7 +174,9 @@ class FaissIndex(EmbeddingIndex):
k: int,
score_threshold: float,
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in FAISS")
raise NotImplementedError(
"Keyword search is not supported - underlying DB FAISS does not support this search mode"
)
async def query_hybrid(
self,
@ -185,7 +187,9 @@ class FaissIndex(EmbeddingIndex):
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in FAISS")
raise NotImplementedError(
"Hybrid search is not supported - underlying DB FAISS does not support this search mode"
)
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):

View file

@ -213,6 +213,36 @@ def available_providers() -> list[ProviderSpec]:
description="Google Gemini inference provider for accessing Gemini models and Google's AI services.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="vertexai",
pip_packages=["litellm", "google-cloud-aiplatform"],
module="llama_stack.providers.remote.inference.vertexai",
config_class="llama_stack.providers.remote.inference.vertexai.VertexAIConfig",
provider_data_validator="llama_stack.providers.remote.inference.vertexai.config.VertexAIProviderDataValidator",
description="""Google Vertex AI inference provider enables you to use Google's Gemini models through Google Cloud's Vertex AI platform, providing several advantages:
Enterprise-grade security: Uses Google Cloud's security controls and IAM
Better integration: Seamless integration with other Google Cloud services
Advanced features: Access to additional Vertex AI features like model tuning and monitoring
Authentication: Uses Google Cloud Application Default Credentials (ADC) instead of API keys
Configuration:
- Set VERTEX_AI_PROJECT environment variable (required)
- Set VERTEX_AI_LOCATION environment variable (optional, defaults to us-central1)
- Use Google Cloud Application Default Credentials or service account key
Authentication Setup:
Option 1 (Recommended): gcloud auth application-default login
Option 2: Set GOOGLE_APPLICATION_CREDENTIALS to service account key path
Available Models:
- vertex_ai/gemini-2.0-flash
- vertex_ai/gemini-2.5-flash
- vertex_ai/gemini-2.5-pro""",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(

View file

@ -45,6 +45,18 @@ That means you'll get fast and efficient vector retrieval.
- Lightweight and easy to use
- Fully integrated with Llama Stack
- GPU support
- **Vector search** - FAISS supports pure vector similarity search using embeddings
## Search Modes
**Supported:**
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
**Not Supported:**
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
## Usage
@ -535,6 +547,7 @@ That means you're not limited to storing vectors in memory or in a separate serv
- Easy to use
- Fully integrated with Llama Stack
- Supports all search modes: vector, keyword, and hybrid search (both inline and remote configurations)
## Usage
@ -625,6 +638,92 @@ vector_io:
- **`client_pem_path`**: Path to the **client certificate** file (required for mTLS).
- **`client_key_path`**: Path to the **client private key** file (required for mTLS).
## Search Modes
Milvus supports three different search modes for both inline and remote configurations:
### Vector Search
Vector search uses semantic similarity to find the most relevant chunks based on embedding vectors. This is the default search mode and works well for finding conceptually similar content.
```python
# Vector search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="What is machine learning?",
search_mode="vector",
max_num_results=5,
)
```
### Keyword Search
Keyword search uses traditional text-based matching to find chunks containing specific terms or phrases. This is useful when you need exact term matches.
```python
# Keyword search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="Python programming language",
search_mode="keyword",
max_num_results=5,
)
```
### Hybrid Search
Hybrid search combines both vector and keyword search methods to provide more comprehensive results. It leverages the strengths of both semantic similarity and exact term matching.
#### Basic Hybrid Search
```python
# Basic hybrid search example (uses RRF ranker with default impact_factor=60.0)
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
)
```
**Note**: The default `impact_factor` value of 60.0 was empirically determined to be optimal in the original RRF research paper: ["Reciprocal Rank Fusion outperforms Condorcet and individual Rank Learning Methods"](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) (Cormack et al., 2009).
#### Hybrid Search with RRF (Reciprocal Rank Fusion) Ranker
RRF combines rankings from vector and keyword search by using reciprocal ranks. The impact factor controls how much weight is given to higher-ranked results.
```python
# Hybrid search with custom RRF parameters
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "rrf",
"impact_factor": 100.0, # Higher values give more weight to top-ranked results
}
},
)
```
#### Hybrid Search with Weighted Ranker
Weighted ranker linearly combines normalized scores from vector and keyword search. The alpha parameter controls the balance between the two search methods.
```python
# Hybrid search with weighted ranker
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "weighted",
"alpha": 0.7, # 70% vector search, 30% keyword search
}
},
)
```
For detailed documentation on RRF and Weighted rankers, please refer to the [Milvus Reranking Guide](https://milvus.io/docs/reranking.md).
## Documentation
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.

View file

@ -13,7 +13,9 @@ LLM_MODEL_IDS = [
"gemini-1.5-flash",
"gemini-1.5-pro",
"gemini-2.0-flash",
"gemini-2.0-flash-lite",
"gemini-2.5-flash",
"gemini-2.5-flash-lite",
"gemini-2.5-pro",
]

View file

@ -457,9 +457,6 @@ class OllamaInferenceAdapter(
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
model_obj = await self._get_model(model)
if model_obj.model_type != ModelType.embedding:
raise ValueError(f"Model {model} is not an embedding model")
if model_obj.provider_resource_id is None:
raise ValueError(f"Model {model} has no provider_resource_id set")

View file

@ -0,0 +1,15 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import VertexAIConfig
async def get_adapter_impl(config: VertexAIConfig, _deps):
from .vertexai import VertexAIInferenceAdapter
impl = VertexAIInferenceAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,45 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
class VertexAIProviderDataValidator(BaseModel):
vertex_project: str | None = Field(
default=None,
description="Google Cloud project ID for Vertex AI",
)
vertex_location: str | None = Field(
default=None,
description="Google Cloud location for Vertex AI (e.g., us-central1)",
)
@json_schema_type
class VertexAIConfig(BaseModel):
project: str = Field(
description="Google Cloud project ID for Vertex AI",
)
location: str = Field(
default="us-central1",
description="Google Cloud location for Vertex AI",
)
@classmethod
def sample_run_config(
cls,
project: str = "${env.VERTEX_AI_PROJECT:=}",
location: str = "${env.VERTEX_AI_LOCATION:=us-central1}",
**kwargs,
) -> dict[str, Any]:
return {
"project": project,
"location": location,
}

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.utils.inference.model_registry import (
ProviderModelEntry,
)
# Vertex AI model IDs with vertex_ai/ prefix as required by litellm
LLM_MODEL_IDS = [
"vertex_ai/gemini-2.0-flash",
"vertex_ai/gemini-2.5-flash",
"vertex_ai/gemini-2.5-pro",
]
SAFETY_MODELS_ENTRIES = list[ProviderModelEntry]()
MODEL_ENTRIES = [ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS] + SAFETY_MODELS_ENTRIES

View file

@ -0,0 +1,52 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.inference import ChatCompletionRequest
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
LiteLLMOpenAIMixin,
)
from .config import VertexAIConfig
from .models import MODEL_ENTRIES
class VertexAIInferenceAdapter(LiteLLMOpenAIMixin):
def __init__(self, config: VertexAIConfig) -> None:
LiteLLMOpenAIMixin.__init__(
self,
MODEL_ENTRIES,
litellm_provider_name="vertex_ai",
api_key_from_config=None, # Vertex AI uses ADC, not API keys
provider_data_api_key_field="vertex_project", # Use project for validation
)
self.config = config
def get_api_key(self) -> str:
# Vertex AI doesn't use API keys, it uses Application Default Credentials
# Return empty string to let litellm handle authentication via ADC
return ""
async def _get_params(self, request: ChatCompletionRequest) -> dict[str, Any]:
# Get base parameters from parent
params = await super()._get_params(request)
# Add Vertex AI specific parameters
provider_data = self.get_request_provider_data()
if provider_data:
if getattr(provider_data, "vertex_project", None):
params["vertex_project"] = provider_data.vertex_project
if getattr(provider_data, "vertex_location", None):
params["vertex_location"] = provider_data.vertex_location
else:
params["vertex_project"] = self.config.project
params["vertex_location"] = self.config.location
# Remove api_key since Vertex AI uses ADC
params.pop("api_key", None)
return params

View file

@ -70,7 +70,7 @@ from openai.types.chat.chat_completion_chunk import (
from openai.types.chat.chat_completion_content_part_image_param import (
ImageURL as OpenAIImageURL,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
from openai.types.chat.chat_completion_message_tool_call import (
Function as OpenAIFunction,
)
from pydantic import BaseModel

View file

@ -9,7 +9,9 @@ import contextvars
import logging
import queue
import random
import sys
import threading
import time
from collections.abc import Callable
from datetime import UTC, datetime
from functools import wraps
@ -30,6 +32,16 @@ from llama_stack.providers.utils.telemetry.trace_protocol import serialize_value
logger = get_logger(__name__, category="core")
# Fallback logger that does NOT propagate to TelemetryHandler to avoid recursion
_fallback_logger = logging.getLogger("llama_stack.telemetry.background")
if not _fallback_logger.handlers:
_fallback_logger.propagate = False
_fallback_logger.setLevel(logging.ERROR)
_fallback_handler = logging.StreamHandler(sys.stderr)
_fallback_handler.setLevel(logging.ERROR)
_fallback_handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
_fallback_logger.addHandler(_fallback_handler)
INVALID_SPAN_ID = 0x0000000000000000
INVALID_TRACE_ID = 0x00000000000000000000000000000000
@ -79,19 +91,32 @@ def generate_trace_id() -> str:
CURRENT_TRACE_CONTEXT = contextvars.ContextVar("trace_context", default=None)
BACKGROUND_LOGGER = None
LOG_QUEUE_FULL_LOG_INTERVAL_SECONDS = 60.0
class BackgroundLogger:
def __init__(self, api: Telemetry, capacity: int = 100000):
self.api = api
self.log_queue = queue.Queue(maxsize=capacity)
self.log_queue: queue.Queue[Any] = queue.Queue(maxsize=capacity)
self.worker_thread = threading.Thread(target=self._process_logs, daemon=True)
self.worker_thread.start()
self._last_queue_full_log_time: float = 0.0
self._dropped_since_last_notice: int = 0
def log_event(self, event):
try:
self.log_queue.put_nowait(event)
except queue.Full:
logger.error("Log queue is full, dropping event")
# Aggregate drops and emit at most once per interval via fallback logger
self._dropped_since_last_notice += 1
current_time = time.time()
if current_time - self._last_queue_full_log_time >= LOG_QUEUE_FULL_LOG_INTERVAL_SECONDS:
_fallback_logger.error(
"Log queue is full; dropped %d events since last notice",
self._dropped_since_last_notice,
)
self._last_queue_full_log_time = current_time
self._dropped_since_last_notice = 0
def _process_logs(self):
while True:

View file

@ -175,7 +175,7 @@ const handleSubmitWithContent = async (content: string) => {
return (
<div className="flex flex-col h-full max-w-4xl mx-auto">
<div className="mb-4 flex justify-between items-center">
<h1 className="text-2xl font-bold">Chat Playground</h1>
<h1 className="text-2xl font-bold">Chat Playground (Completions)</h1>
<div className="flex gap-2">
<Select value={selectedModel} onValueChange={setSelectedModel} disabled={isModelsLoading || isGenerating}>
<SelectTrigger className="w-[180px]">

View file

@ -6,6 +6,8 @@ import {
MoveUpRight,
Database,
MessageCircle,
Settings2,
Compass,
} from "lucide-react";
import Link from "next/link";
import { usePathname } from "next/navigation";
@ -22,15 +24,16 @@ import {
SidebarMenuItem,
SidebarHeader,
} from "@/components/ui/sidebar";
// Extracted Chat Playground item
const chatPlaygroundItem = {
title: "Chat Playground",
url: "/chat-playground",
icon: MessageCircle,
};
// Removed Chat Playground from log items
const logItems = [
const createItems = [
{
title: "Chat Playground",
url: "/chat-playground",
icon: MessageCircle,
},
];
const manageItems = [
{
title: "Chat Completions",
url: "/logs/chat-completions",
@ -53,77 +56,96 @@ const logItems = [
},
];
const optimizeItems: { title: string; url: string; icon: React.ElementType }[] = [
{
title: "Evaluations",
url: "",
icon: Compass,
},
{
title: "Fine-tuning",
url: "",
icon: Settings2,
},
];
interface SidebarItem {
title: string;
url: string;
icon: React.ElementType;
}
export function AppSidebar() {
const pathname = usePathname();
return (
<Sidebar>
<SidebarHeader>
<Link href="/">Llama Stack</Link>
</SidebarHeader>
<SidebarContent>
{/* Chat Playground as its own section */}
<SidebarGroup>
<SidebarGroupContent>
<SidebarMenu>
<SidebarMenuItem>
const renderSidebarItems = (items: SidebarItem[]) => {
return items.map((item) => {
const isActive = pathname.startsWith(item.url);
return (
<SidebarMenuItem key={item.title}>
<SidebarMenuButton
asChild
className={cn(
"justify-start",
isActive &&
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100",
)}
>
<Link href={item.url}>
<item.icon
className={cn(
isActive && "text-gray-900 dark:text-gray-100",
"mr-2 h-4 w-4",
)}
/>
<span>{item.title}</span>
</Link>
</SidebarMenuButton>
</SidebarMenuItem>
);
});
};
return (
<Sidebar>
<SidebarHeader>
<Link href="/">Llama Stack</Link>
</SidebarHeader>
<SidebarContent>
<SidebarGroup>
<SidebarGroupLabel>Create</SidebarGroupLabel>
<SidebarGroupContent>
<SidebarMenu>{renderSidebarItems(createItems)}</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
<SidebarGroup>
<SidebarGroupLabel>Manage</SidebarGroupLabel>
<SidebarGroupContent>
<SidebarMenu>{renderSidebarItems(manageItems)}</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
<SidebarGroup>
<SidebarGroupLabel>Optimize</SidebarGroupLabel>
<SidebarGroupContent>
<SidebarMenu>
{optimizeItems.map((item) => (
<SidebarMenuItem key={item.title}>
<SidebarMenuButton
asChild
className={cn(
"justify-start",
pathname.startsWith(chatPlaygroundItem.url) &&
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100",
)}
disabled
className="justify-start opacity-60 cursor-not-allowed"
>
<Link href={chatPlaygroundItem.url}>
<chatPlaygroundItem.icon
className={cn(
pathname.startsWith(chatPlaygroundItem.url) && "text-gray-900 dark:text-gray-100",
"mr-2 h-4 w-4",
)}
/>
<span>{chatPlaygroundItem.title}</span>
</Link>
<item.icon className="mr-2 h-4 w-4" />
<span>{item.title}</span>
<span className="ml-2 text-xs text-gray-500">(Coming Soon)</span>
</SidebarMenuButton>
</SidebarMenuItem>
</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
{/* Logs section */}
<SidebarGroup>
<SidebarGroupLabel>Logs</SidebarGroupLabel>
<SidebarGroupContent>
<SidebarMenu>
{logItems.map((item) => {
const isActive = pathname.startsWith(item.url);
return (
<SidebarMenuItem key={item.title}>
<SidebarMenuButton
asChild
className={cn(
"justify-start",
isActive &&
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100",
)}
>
<Link href={item.url}>
<item.icon
className={cn(
isActive && "text-gray-900 dark:text-gray-100",
"mr-2 h-4 w-4",
)}
/>
<span>{item.title}</span>
</Link>
</SidebarMenuButton>
</SidebarMenuItem>
);
})}
</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
</SidebarContent>
</Sidebar>
))}
</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
</SidebarContent>
</Sidebar>
);
}