mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-12 12:06:04 +00:00
feat(telemetry): first iteration of in memory Otel tests
This commit is contained in:
parent
dafffe8d1e
commit
83a5c9ee7b
9 changed files with 9388 additions and 0 deletions
81
tests/integration/telemetry/test_completions.py
Normal file
81
tests/integration/telemetry/test_completions.py
Normal file
|
|
@ -0,0 +1,81 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""Telemetry tests verifying @trace_protocol decorator format using in-memory exporter."""
|
||||
|
||||
import json
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
pytestmark = pytest.mark.skipif(
|
||||
os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE") == "server",
|
||||
reason="In-memory telemetry tests only work in library_client mode (server mode runs in separate process)",
|
||||
)
|
||||
|
||||
|
||||
def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id):
|
||||
"""Verify streaming adds chunk_count and __type__=async_generator."""
|
||||
|
||||
stream = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Test trace openai 1"}],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
chunks = list(stream)
|
||||
assert len(chunks) > 0
|
||||
|
||||
spans = mock_otlp_collector.get_spans()
|
||||
assert len(spans) > 0
|
||||
|
||||
for span in spans:
|
||||
if span.attributes.get("__type__") == "async_generator":
|
||||
chunk_count = span.attributes.get("chunk_count")
|
||||
if chunk_count:
|
||||
assert int(chunk_count) == len(chunks)
|
||||
|
||||
|
||||
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
|
||||
"""Comprehensive validation of telemetry data format including spans and metrics."""
|
||||
collector = mock_otlp_collector
|
||||
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}],
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
assert response
|
||||
|
||||
# Verify spans
|
||||
spans = collector.get_spans()
|
||||
assert len(spans) == 5
|
||||
|
||||
for span in spans:
|
||||
print(f"Span: {span.attributes}")
|
||||
if span.attributes.get("__autotraced__"):
|
||||
assert span.attributes.get("__class__") and span.attributes.get("__method__")
|
||||
assert span.attributes.get("__type__") in ["async", "sync", "async_generator"]
|
||||
if span.attributes.get("__args__"):
|
||||
args = json.loads(span.attributes.get("__args__"))
|
||||
# The parameter is 'model' in openai_chat_completion, not 'model_id'
|
||||
if "model" in args:
|
||||
assert args.get("model") == text_model_id
|
||||
|
||||
# Verify token metrics in response
|
||||
# Note: Llama Stack emits token metrics in the response JSON, not via OTel Metrics API
|
||||
usage = response.usage if hasattr(response, "usage") else response.get("usage")
|
||||
assert usage
|
||||
prompt_tokens = usage.get("prompt_tokens") if isinstance(usage, dict) else usage.prompt_tokens
|
||||
completion_tokens = usage.get("completion_tokens") if isinstance(usage, dict) else usage.completion_tokens
|
||||
total_tokens = usage.get("total_tokens") if isinstance(usage, dict) else usage.total_tokens
|
||||
|
||||
assert prompt_tokens is not None and prompt_tokens > 0
|
||||
assert completion_tokens is not None and completion_tokens > 0
|
||||
assert total_tokens is not None and total_tokens > 0
|
||||
Loading…
Add table
Add a link
Reference in a new issue