redid api_recorder.py now, step 0

This commit is contained in:
Ashwin Bharambe 2025-10-08 12:43:58 -07:00
parent 9205731cd6
commit 8414c30859

View file

@ -15,20 +15,19 @@ from enum import StrEnum
from pathlib import Path
from typing import Any, Literal, cast
from openai import NOT_GIVEN
from openai import NOT_GIVEN, OpenAI
from llama_stack.log import get_logger
logger = get_logger(__name__, category="testing")
# Global state for the API recording system
# Global state for the recording system
# Note: Using module globals instead of ContextVars because the session-scoped
# client initialization happens in one async context, but tests run in different
# contexts, and we need the mode/storage to persist across all contexts.
_current_mode: str | None = None
_current_storage: ResponseStorage | None = None
_original_methods: dict[str, Any] = {}
_memory_cache: dict[str, dict[str, Any]] = {}
# Test context uses ContextVar since it changes per-test and needs async isolation
from contextvars import ContextVar
@ -52,29 +51,162 @@ class APIRecordingMode(StrEnum):
RECORD_IF_MISSING = "record-if-missing"
def _normalize_file_ids(obj: Any) -> Any:
"""Recursively replace file IDs with a canonical placeholder for consistent hashing."""
import re
def normalize_inference_request(method: str, url: str, headers: dict[str, Any], body: dict[str, Any]) -> str:
"""Create a normalized hash of the request for consistent matching.
if isinstance(obj, dict):
result = {}
for k, v in obj.items():
# Normalize file IDs in attribute dictionaries
if k == "document_id" and isinstance(v, str) and v.startswith("file-"):
result[k] = "file-NORMALIZED"
Includes test_id from context to ensure test isolation - identical requests
from different tests will have different hashes.
Exception: Model list endpoints (/v1/models, /api/tags) exclude test_id since
they are infrastructure/shared and need to work across session setup and tests.
"""
# Extract just the endpoint path
from urllib.parse import urlparse
parsed = urlparse(url)
normalized: dict[str, Any] = {
"method": method.upper(),
"endpoint": parsed.path,
"body": body,
}
# Include test_id for isolation, except for shared infrastructure endpoints
if parsed.path not in ("/api/tags", "/v1/models"):
normalized["test_id"] = _test_context.get()
# Create hash - sort_keys=True ensures deterministic ordering
normalized_json = json.dumps(normalized, sort_keys=True)
return hashlib.sha256(normalized_json.encode()).hexdigest()
def normalize_tool_request(provider_name: str, tool_name: str, kwargs: dict[str, Any]) -> str:
"""Create a normalized hash of the tool request for consistent matching."""
normalized = {"provider": provider_name, "tool_name": tool_name, "kwargs": kwargs}
# Create hash - sort_keys=True ensures deterministic ordering
normalized_json = json.dumps(normalized, sort_keys=True)
return hashlib.sha256(normalized_json.encode()).hexdigest()
def _sync_test_context_from_provider_data():
"""In server mode, sync test ID from provider_data to _test_context.
This ensures that storage operations (which read from _test_context) work correctly
in server mode where the test ID arrives via HTTP header provider_data.
Returns a token to reset _test_context, or None if no sync was needed.
"""
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
if stack_config_type != "server":
return None
try:
from llama_stack.core.request_headers import PROVIDER_DATA_VAR
provider_data = PROVIDER_DATA_VAR.get()
if provider_data and "__test_id" in provider_data:
test_id = provider_data["__test_id"]
return _test_context.set(test_id)
except ImportError:
pass
return None
def patch_httpx_for_test_id():
"""Patch client _prepare_request methods to inject test ID into provider data header.
This is needed for server mode where the test ID must be transported from
client to server via HTTP headers. In library_client mode, this patch is a no-op
since everything runs in the same process.
We use the _prepare_request hook that Stainless clients provide for mutating
requests after construction but before sending.
"""
from llama_stack_client import LlamaStackClient
if "llama_stack_client_prepare_request" in _original_methods:
return
_original_methods["llama_stack_client_prepare_request"] = LlamaStackClient._prepare_request
_original_methods["openai_prepare_request"] = OpenAI._prepare_request
def patched_prepare_request(self, request):
# Call original first (it's a sync method that returns None)
# Determine which original to call based on client type
if "llama_stack_client" in self.__class__.__module__:
_original_methods["llama_stack_client_prepare_request"](self, request)
_original_methods["openai_prepare_request"](self, request)
# Only inject test ID in server mode
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
test_id = _test_context.get()
if stack_config_type == "server" and test_id:
provider_data_header = request.headers.get("X-LlamaStack-Provider-Data")
if provider_data_header:
provider_data = json.loads(provider_data_header)
else:
result[k] = _normalize_file_ids(v)
return result
elif isinstance(obj, list):
return [_normalize_file_ids(item) for item in obj]
elif isinstance(obj, str):
# Replace file-<uuid> patterns in strings (like in text content)
return re.sub(r"file-[a-f0-9]{32}", "file-NORMALIZED", obj)
else:
return obj
provider_data = {}
provider_data["__test_id"] = test_id
request.headers["X-LlamaStack-Provider-Data"] = json.dumps(provider_data)
return None
LlamaStackClient._prepare_request = patched_prepare_request
OpenAI._prepare_request = patched_prepare_request
def _normalize_response_data(data: dict[str, Any], request_hash: str) -> dict[str, Any]:
# currently, unpatch is never called
def unpatch_httpx_for_test_id():
"""Remove client _prepare_request patches for test ID injection."""
if "llama_stack_client_prepare_request" not in _original_methods:
return
from llama_stack_client import LlamaStackClient
LlamaStackClient._prepare_request = _original_methods["llama_stack_client_prepare_request"]
del _original_methods["llama_stack_client_prepare_request"]
OpenAI._prepare_request = _original_methods["openai_prepare_request"]
del _original_methods["openai_prepare_request"]
def get_api_recording_mode() -> APIRecordingMode:
return APIRecordingMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "replay").lower())
def setup_api_recording():
"""
Returns a context manager that can be used to record or replay API requests (inference and tools).
This is to be used in tests to increase their reliability and reduce reliance on expensive, external services.
Currently supports:
- Inference: OpenAI and Ollama clients
- Tools: Search providers (Tavily)
Two environment variables are supported:
- LLAMA_STACK_TEST_INFERENCE_MODE: The mode to run in. Must be 'live', 'record', 'replay', or 'record-if-missing'. Default is 'replay'.
- 'live': Make all requests live without recording
- 'record': Record all requests (overwrites existing recordings)
- 'replay': Use only recorded responses (fails if recording not found)
- 'record-if-missing': Use recorded responses when available, record new ones when not found
- LLAMA_STACK_TEST_RECORDING_DIR: The directory to store the recordings in. Default is 'tests/integration/recordings'.
The recordings are stored as JSON files.
"""
mode = get_api_recording_mode()
if mode == APIRecordingMode.LIVE:
return None
storage_dir = os.environ.get("LLAMA_STACK_TEST_RECORDING_DIR", DEFAULT_STORAGE_DIR)
return api_recording(mode=mode, storage_dir=storage_dir)
def _normalize_response(data: dict[str, Any], request_hash: str) -> dict[str, Any]:
"""Normalize fields that change between recordings but don't affect functionality.
This reduces noise in git diffs by making IDs deterministic and timestamps constant.
@ -106,184 +238,11 @@ def _normalize_response_data(data: dict[str, Any], request_hash: str) -> dict[st
return data
def normalize_request(method: str, url: str, headers: dict[str, Any], body: dict[str, Any]) -> str:
"""Create a normalized hash of the request for consistent matching.
Includes test_id from context to ensure test isolation - identical requests
from different tests will have different hashes.
"""
# Extract just the endpoint path
from urllib.parse import urlparse
parsed = urlparse(url)
# Normalize file IDs in the body to ensure consistent hashing across test runs
normalized_body = _normalize_file_ids(body)
normalized: dict[str, Any] = {"method": method.upper(), "endpoint": parsed.path, "body": normalized_body}
# Include test_id for isolation, except for shared infrastructure endpoints
if parsed.path not in ("/api/tags", "/v1/models"):
# Server mode: test ID was synced from provider_data to _test_context
# by _sync_test_context_from_provider_data() at the start of the request.
# We read from _test_context because it's available in all contexts (including
# when making outgoing API calls), whereas PROVIDER_DATA_VAR is only set
# for incoming HTTP requests.
#
# Library client mode: test ID in same-process ContextVar
test_id = _test_context.get()
normalized["test_id"] = test_id
# Create hash - sort_keys=True ensures deterministic ordering
normalized_json = json.dumps(normalized, sort_keys=True)
request_hash = hashlib.sha256(normalized_json.encode()).hexdigest()
return request_hash
def normalize_tool_request(provider_name: str, tool_name: str, kwargs: dict[str, Any]) -> str:
"""Create a normalized hash of the tool request for consistent matching."""
normalized = {"provider": provider_name, "tool_name": tool_name, "kwargs": kwargs}
# Create hash - sort_keys=True ensures deterministic ordering
normalized_json = json.dumps(normalized, sort_keys=True)
return hashlib.sha256(normalized_json.encode()).hexdigest()
@contextmanager
def set_test_context(test_id: str) -> Generator[None, None, None]:
"""Set the test context for recording isolation.
Usage:
with set_test_context("test_basic_completion"):
# Make API calls that will be recorded with this test_id
response = client.chat.completions.create(...)
"""
token = _test_context.set(test_id)
try:
yield
finally:
_test_context.reset(token)
def patch_httpx_for_test_id():
"""Patch client _prepare_request methods to inject test ID into provider data header.
Patches both LlamaStackClient and OpenAI client to ensure test ID is transported
from client to server via HTTP headers in server mode.
This is needed for server mode where the test ID must be transported from
client to server via HTTP headers. In library_client mode, this patch is a no-op
since everything runs in the same process.
We use the _prepare_request hook that Stainless clients provide for mutating
requests after construction but before sending.
"""
from llama_stack_client import LlamaStackClient
if "llama_stack_client_prepare_request" in _original_methods:
# Already patched
return
# Save original methods
_original_methods["llama_stack_client_prepare_request"] = LlamaStackClient._prepare_request
# Also patch OpenAI client if available (used in compat tests)
try:
from openai import OpenAI
_original_methods["openai_prepare_request"] = OpenAI._prepare_request
except ImportError:
pass
def patched_prepare_request(self, request):
# Call original first (it's a sync method that returns None)
# Determine which original to call based on client type
if "llama_stack_client" in self.__class__.__module__:
_original_methods["llama_stack_client_prepare_request"](self, request)
elif "openai_prepare_request" in _original_methods:
_original_methods["openai_prepare_request"](self, request)
# Only inject test ID in server mode
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
test_id = _test_context.get()
if stack_config_type == "server" and test_id:
# Get existing provider data header or create new dict
provider_data_header = request.headers.get("X-LlamaStack-Provider-Data")
if provider_data_header:
provider_data = json.loads(provider_data_header)
else:
provider_data = {}
# Inject test ID
provider_data["__test_id"] = test_id
request.headers["X-LlamaStack-Provider-Data"] = json.dumps(provider_data)
# Sync version returns None
return None
# Apply patches
LlamaStackClient._prepare_request = patched_prepare_request
if "openai_prepare_request" in _original_methods:
from openai import OpenAI
OpenAI._prepare_request = patched_prepare_request
def unpatch_httpx_for_test_id():
"""Remove client _prepare_request patches for test ID injection."""
if "llama_stack_client_prepare_request" not in _original_methods:
return
from llama_stack_client import LlamaStackClient
LlamaStackClient._prepare_request = _original_methods["llama_stack_client_prepare_request"]
del _original_methods["llama_stack_client_prepare_request"]
# Also restore OpenAI client if it was patched
if "openai_prepare_request" in _original_methods:
from openai import OpenAI
OpenAI._prepare_request = _original_methods["openai_prepare_request"]
del _original_methods["openai_prepare_request"]
def get_api_recording_mode() -> APIRecordingMode:
return APIRecordingMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "replay").lower())
def setup_api_recording():
"""
Returns a context manager that can be used to record or replay API requests (inference and tools).
This is to be used in tests to increase their reliability and reduce reliance on expensive, external services.
Currently supports:
- Inference: OpenAI, Ollama, and LiteLLM clients
- Tools: Search providers (Tavily for now)
Two environment variables are supported:
- LLAMA_STACK_TEST_INFERENCE_MODE: The mode to run in. Options:
- 'live': Make real API calls, no recording
- 'record': Record all API interactions (overwrites existing)
- 'replay': Use recorded responses only (default)
- 'record-if-missing': Replay when possible, record when recording doesn't exist
- LLAMA_STACK_TEST_RECORDING_DIR: The directory to store the recordings in. Default is 'tests/integration/recordings'.
The recordings are stored as JSON files.
"""
mode = get_api_recording_mode()
if mode == APIRecordingMode.LIVE:
return None
storage_dir = os.environ.get("LLAMA_STACK_TEST_RECORDING_DIR", DEFAULT_STORAGE_DIR)
return api_recording(mode=mode, storage_dir=storage_dir)
def _serialize_response(response: Any) -> Any:
def _serialize_response(response: Any, request_hash: str = "") -> Any:
if hasattr(response, "model_dump"):
data = response.model_dump(mode="json")
# Normalize fields to reduce noise
data = _normalize_response(data, request_hash)
return {
"__type__": f"{response.__class__.__module__}.{response.__class__.__qualname__}",
"__data__": data,
@ -308,17 +267,22 @@ def _deserialize_response(data: dict[str, Any]) -> Any:
return cls.model_validate(data["__data__"])
except (ImportError, AttributeError, TypeError, ValueError) as e:
logger.warning(f"Failed to deserialize object of type {data['__type__']}: {e}")
return data["__data__"]
logger.warning(f"Failed to deserialize object of type {data['__type__']} with model_validate: {e}")
try:
return cls.model_construct(**data["__data__"])
except Exception as e:
logger.warning(f"Failed to deserialize object of type {data['__type__']} with model_construct: {e}")
return data["__data__"]
return data
class ResponseStorage:
"""Handles storage/retrieval for API recordings (inference and tools)."""
"""Handles SQLite index + JSON file storage/retrieval for inference recordings."""
def __init__(self, base_dir: Path):
self.base_dir = base_dir
# Don't create responses_dir here - determine it per-test at runtime
def _get_test_dir(self) -> Path:
"""Get the recordings directory in the test file's parent directory.
@ -327,7 +291,6 @@ class ResponseStorage:
returns "tests/integration/inference/recordings/".
"""
test_id = _test_context.get()
if test_id:
# Extract the directory path from the test nodeid
# e.g., "tests/integration/inference/test_basic.py::test_foo[params]"
@ -342,21 +305,17 @@ class ResponseStorage:
# Fallback for non-test contexts
return self.base_dir / "recordings"
def _ensure_directories(self) -> Path:
def _ensure_directories(self):
"""Ensure test-specific directories exist."""
test_dir = self._get_test_dir()
test_dir.mkdir(parents=True, exist_ok=True)
return test_dir
def store_recording(self, request_hash: str, request: dict[str, Any], response: dict[str, Any]):
"""Store a request/response pair both in memory cache and on disk."""
global _memory_cache
# Store in memory cache first
_memory_cache[request_hash] = {"request": request, "response": response}
"""Store a request/response pair."""
responses_dir = self._ensure_directories()
# Generate unique response filename using full hash
# Use FULL hash (not truncated)
response_file = f"{request_hash}.json"
# Serialize response body if needed
@ -364,32 +323,45 @@ class ResponseStorage:
if "body" in serialized_response:
if isinstance(serialized_response["body"], list):
# Handle streaming responses (list of chunks)
serialized_response["body"] = [_serialize_response(chunk) for chunk in serialized_response["body"]]
serialized_response["body"] = [
_serialize_response(chunk, request_hash) for chunk in serialized_response["body"]
]
else:
# Handle single response
serialized_response["body"] = _serialize_response(serialized_response["body"])
serialized_response["body"] = _serialize_response(serialized_response["body"], request_hash)
# If this is a model-list endpoint recording, include models digest in filename to distinguish variants
# For model-list endpoints, include digest in filename to distinguish different model sets
endpoint = request.get("endpoint")
test_id = _test_context.get()
if endpoint in ("/api/tags", "/v1/models"):
test_id = None
digest = _model_identifiers_digest(endpoint, response)
response_file = f"models-{request_hash}-{digest}.json"
response_path = responses_dir / response_file
# Save response to JSON file
# Save response to JSON file with metadata
with open(response_path, "w") as f:
json.dump({"test_id": test_id, "request": request, "response": serialized_response}, f, indent=2)
json.dump(
{
"test_id": _test_context.get(),
"request": request,
"response": serialized_response,
},
f,
indent=2,
)
f.write("\n")
f.flush()
def find_recording(self, request_hash: str) -> dict[str, Any] | None:
"""Find a recorded response by request hash."""
"""Find a recorded response by request hash.
Uses fallback: first checks test-specific dir, then falls back to base recordings dir.
This handles cases where recordings happen during session setup (no test context) but
are requested during tests (with test context).
"""
response_file = f"{request_hash}.json"
# Check test-specific directory first
# Try test-specific directory first
test_dir = self._get_test_dir()
response_path = test_dir / response_file
@ -529,23 +501,18 @@ async def _patched_tool_invoke_method(
# If RECORD_IF_MISSING and no recording found, fall through to record
if _current_mode in (APIRecordingMode.RECORD, APIRecordingMode.RECORD_IF_MISSING):
# Check in-memory cache first (collision detection)
global _memory_cache
if request_hash in _memory_cache:
# Return the cached response instead of making a new tool call
return _memory_cache[request_hash]["response"]["body"]
# No cached response, make the tool call and record it
# Make the tool call and record it
result = await original_method(self, tool_name, kwargs)
request_data = {
"test_id": _test_context.get(),
"provider": provider_name,
"tool_name": tool_name,
"kwargs": kwargs,
}
response_data = {"body": result, "is_streaming": False}
# Store the recording (both in memory and on disk)
# Store the recording
_current_storage.store_recording(request_hash, request_data, response_data)
return result
@ -557,40 +524,15 @@ async def _patched_tool_invoke_method(
_test_context.reset(test_context_token)
def _sync_test_context_from_provider_data():
"""In server mode, sync test ID from provider_data to _test_context.
This ensures that storage operations (which read from _test_context) work correctly
in server mode where the test ID arrives via HTTP header provider_data.
Returns a token to reset _test_context, or None if no sync was needed.
"""
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
if stack_config_type != "server":
return None
try:
from llama_stack.core.request_headers import PROVIDER_DATA_VAR
provider_data = PROVIDER_DATA_VAR.get()
if provider_data and "__test_id" in provider_data:
test_id = provider_data["__test_id"]
return _test_context.set(test_id)
except ImportError:
pass
return None
async def _patched_inference_method(original_method, self, client_type, endpoint, *args, **kwargs):
global _current_mode, _current_storage
if _current_mode == APIRecordingMode.LIVE or _current_storage is None:
# Normal operation
if client_type == "litellm":
return await original_method(*args, **kwargs)
mode = _current_mode
storage = _current_storage
if mode == APIRecordingMode.LIVE or storage is None:
if endpoint == "/v1/models":
return original_method(self, *args, **kwargs)
else:
return await original_method(self, *args, **kwargs)
@ -609,30 +551,34 @@ async def _patched_inference_method(original_method, self, client_type, endpoint
base_url = getattr(self, "host", "http://localhost:11434")
if not base_url.startswith("http"):
base_url = f"http://{base_url}"
elif client_type == "litellm":
# For LiteLLM, extract base URL from kwargs if available
base_url = kwargs.get("api_base", "https://api.openai.com")
else:
raise ValueError(f"Unknown client type: {client_type}")
url = base_url.rstrip("/") + endpoint
# Special handling for Databricks URLs to avoid leaking workspace info
# e.g. https://adb-1234567890123456.7.cloud.databricks.com -> https://...cloud.databricks.com
if "cloud.databricks.com" in url:
url = "__databricks__" + url.split("cloud.databricks.com")[-1]
method = "POST"
headers = {}
body = kwargs
request_hash = normalize_request(method, url, headers, body)
request_hash = normalize_inference_request(method, url, headers, body)
if _current_mode in (APIRecordingMode.REPLAY, APIRecordingMode.RECORD_IF_MISSING):
# Special handling for model-list endpoints: return union of all responses
# Try to find existing recording for REPLAY or RECORD_IF_MISSING modes
recording = None
if mode == APIRecordingMode.REPLAY or mode == APIRecordingMode.RECORD_IF_MISSING:
# Special handling for model-list endpoints: merge all recordings with this hash
if endpoint in ("/api/tags", "/v1/models"):
records = _current_storage._model_list_responses(request_hash)
records = storage._model_list_responses(request_hash)
recording = _combine_model_list_responses(endpoint, records)
else:
recording = _current_storage.find_recording(request_hash)
recording = storage.find_recording(request_hash)
if recording:
response_body = recording["response"]["body"]
if recording["response"].get("is_streaming", False) or recording["response"].get("is_paginated", False):
if recording["response"].get("is_streaming", False):
async def replay_stream():
for chunk in response_body:
@ -641,41 +587,25 @@ async def _patched_inference_method(original_method, self, client_type, endpoint
return replay_stream()
else:
return response_body
elif _current_mode == APIRecordingMode.REPLAY:
elif mode == APIRecordingMode.REPLAY:
# REPLAY mode requires recording to exist
raise RuntimeError(
f"No recorded response found for request hash: {request_hash}\n"
f"Request: {method} {url} {body}\n"
f"Model: {body.get('model', 'unknown')}\n"
f"To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record"
)
# If RECORD_IF_MISSING and no recording found, fall through to record
if _current_mode in (APIRecordingMode.RECORD, APIRecordingMode.RECORD_IF_MISSING):
# Check in-memory cache first (collision detection)
global _memory_cache
if request_hash in _memory_cache:
# Return the cached response instead of making a new API call
cached_recording = _memory_cache[request_hash]
response_body = cached_recording["response"]["body"]
if cached_recording["response"].get("is_streaming", False) or cached_recording["response"].get(
"is_paginated", False
):
async def replay_cached_stream():
for chunk in response_body:
yield chunk
return replay_cached_stream()
else:
return response_body
# No cached response, make the API call and record it
if client_type == "litellm":
response = await original_method(*args, **kwargs)
if mode == APIRecordingMode.RECORD or (mode == APIRecordingMode.RECORD_IF_MISSING and not recording):
if endpoint == "/v1/models":
response = original_method(self, *args, **kwargs)
else:
response = await original_method(self, *args, **kwargs)
# we want to store the result of the iterator, not the iterator itself
if endpoint == "/v1/models":
response = [m async for m in response]
request_data = {
"method": method,
"url": url,
@ -688,20 +618,16 @@ async def _patched_inference_method(original_method, self, client_type, endpoint
# Determine if this is a streaming request based on request parameters
is_streaming = body.get("stream", False)
# Special case: /v1/models is a paginated endpoint that returns an async iterator
is_paginated = endpoint == "/v1/models"
if is_streaming or is_paginated:
# For streaming/paginated responses, we need to collect all chunks immediately before yielding
if is_streaming:
# For streaming responses, we need to collect all chunks immediately before yielding
# This ensures the recording is saved even if the generator isn't fully consumed
chunks = []
async for chunk in response:
chunks.append(chunk)
# Store the recording immediately (both in memory and on disk)
# For paginated endpoints, mark as paginated rather than streaming
response_data = {"body": chunks, "is_streaming": is_streaming, "is_paginated": is_paginated}
_current_storage.store_recording(request_hash, request_data, response_data)
# Store the recording immediately
response_data = {"body": chunks, "is_streaming": True}
storage.store_recording(request_hash, request_data, response_data)
# Return a generator that replays the stored chunks
async def replay_recorded_stream():
@ -711,24 +637,20 @@ async def _patched_inference_method(original_method, self, client_type, endpoint
return replay_recorded_stream()
else:
response_data = {"body": response, "is_streaming": False}
# Store the response (both in memory and on disk)
_current_storage.store_recording(request_hash, request_data, response_data)
storage.store_recording(request_hash, request_data, response_data)
return response
else:
raise AssertionError(f"Invalid mode: {_current_mode}")
raise AssertionError(f"Invalid mode: {mode}")
finally:
# Reset test context if we set it in server mode
if test_context_token is not None:
if test_context_token:
_test_context.reset(test_context_token)
def patch_api_clients():
"""Install monkey patches for inference clients and tool runtime methods."""
def patch_inference_clients():
"""Install monkey patches for OpenAI client methods, Ollama AsyncClient methods, and tool runtime methods."""
global _original_methods
import litellm
from ollama import AsyncClient as OllamaAsyncClient
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
from openai.resources.completions import AsyncCompletions
@ -736,9 +658,8 @@ def patch_api_clients():
from openai.resources.models import AsyncModels
from llama_stack.providers.remote.tool_runtime.tavily_search.tavily_search import TavilySearchToolRuntimeImpl
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
# Store original methods for OpenAI, Ollama, LiteLLM clients, and tool runtimes
# Store original methods for OpenAI, Ollama clients, and tool runtimes
_original_methods = {
"chat_completions_create": AsyncChatCompletions.create,
"completions_create": AsyncCompletions.create,
@ -750,9 +671,6 @@ def patch_api_clients():
"ollama_ps": OllamaAsyncClient.ps,
"ollama_pull": OllamaAsyncClient.pull,
"ollama_list": OllamaAsyncClient.list,
"litellm_acompletion": litellm.acompletion,
"litellm_atext_completion": litellm.atext_completion,
"litellm_openai_mixin_get_api_key": LiteLLMOpenAIMixin.get_api_key,
"tavily_invoke_tool": TavilySearchToolRuntimeImpl.invoke_tool,
}
@ -774,18 +692,10 @@ def patch_api_clients():
def patched_models_list(self, *args, **kwargs):
async def _iter():
result = await _patched_inference_method(
for item in await _patched_inference_method(
_original_methods["models_list"], self, "openai", "/v1/models", *args, **kwargs
)
# The result is either an async generator (streaming/paginated) or a list
# If it's an async generator, iterate through it
if hasattr(result, "__aiter__"):
async for item in result:
yield item
else:
# It's a list, yield each item
for item in result:
yield item
):
yield item
return _iter()
@ -834,33 +744,6 @@ def patch_api_clients():
OllamaAsyncClient.pull = patched_ollama_pull
OllamaAsyncClient.list = patched_ollama_list
# Create patched methods for LiteLLM
async def patched_litellm_acompletion(*args, **kwargs):
return await _patched_inference_method(
_original_methods["litellm_acompletion"], None, "litellm", "/chat/completions", *args, **kwargs
)
async def patched_litellm_atext_completion(*args, **kwargs):
return await _patched_inference_method(
_original_methods["litellm_atext_completion"], None, "litellm", "/completions", *args, **kwargs
)
# Apply LiteLLM patches
litellm.acompletion = patched_litellm_acompletion
litellm.atext_completion = patched_litellm_atext_completion
# Create patched method for LiteLLMOpenAIMixin.get_api_key
def patched_litellm_get_api_key(self):
global _current_mode
if _current_mode != APIRecordingMode.REPLAY:
return _original_methods["litellm_openai_mixin_get_api_key"](self)
else:
# For record/replay modes, return a fake API key to avoid exposing real credentials
return "fake-api-key-for-testing"
# Apply LiteLLMOpenAIMixin patch
LiteLLMOpenAIMixin.get_api_key = patched_litellm_get_api_key
# Create patched methods for tool runtimes
async def patched_tavily_invoke_tool(self, tool_name: str, kwargs: dict[str, Any]):
return await _patched_tool_invoke_method(
@ -871,15 +754,14 @@ def patch_api_clients():
TavilySearchToolRuntimeImpl.invoke_tool = patched_tavily_invoke_tool
def unpatch_api_clients():
"""Remove monkey patches and restore original client methods and tool runtimes."""
global _original_methods, _memory_cache
def unpatch_inference_clients():
"""Remove monkey patches and restore original OpenAI, Ollama client, and tool runtime methods."""
global _original_methods
if not _original_methods:
return
# Import here to avoid circular imports
import litellm
from ollama import AsyncClient as OllamaAsyncClient
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
from openai.resources.completions import AsyncCompletions
@ -887,7 +769,6 @@ def unpatch_api_clients():
from openai.resources.models import AsyncModels
from llama_stack.providers.remote.tool_runtime.tavily_search.tavily_search import TavilySearchToolRuntimeImpl
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
# Restore OpenAI client methods
AsyncChatCompletions.create = _original_methods["chat_completions_create"]
@ -903,19 +784,11 @@ def unpatch_api_clients():
OllamaAsyncClient.pull = _original_methods["ollama_pull"]
OllamaAsyncClient.list = _original_methods["ollama_list"]
# Restore LiteLLM methods
litellm.acompletion = _original_methods["litellm_acompletion"]
litellm.atext_completion = _original_methods["litellm_atext_completion"]
LiteLLMOpenAIMixin.get_api_key = _original_methods["litellm_openai_mixin_get_api_key"]
# Restore tool runtime methods
TavilySearchToolRuntimeImpl.invoke_tool = _original_methods["tavily_invoke_tool"]
_original_methods.clear()
# Clear memory cache to prevent memory leaks
_memory_cache.clear()
@contextmanager
def api_recording(mode: str, storage_dir: str | Path | None = None) -> Generator[None, None, None]:
@ -933,14 +806,14 @@ def api_recording(mode: str, storage_dir: str | Path | None = None) -> Generator
if storage_dir is None:
raise ValueError("storage_dir is required for record, replay, and record-if-missing modes")
_current_storage = ResponseStorage(Path(storage_dir))
patch_api_clients()
patch_inference_clients()
yield
finally:
# Restore previous state
if mode in ["record", "replay", "record-if-missing"]:
unpatch_api_clients()
unpatch_inference_clients()
_current_mode = prev_mode
_current_storage = prev_storage