mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
feat: combine ProviderSpec datatypes (#3378)
Some checks failed
Unit Tests / unit-tests (3.13) (push) Failing after 3s
UI Tests / ui-tests (22) (push) Successful in 36s
Update ReadTheDocs / update-readthedocs (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 4s
Pre-commit / pre-commit (push) Successful in 1m12s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 7s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Some checks failed
Unit Tests / unit-tests (3.13) (push) Failing after 3s
UI Tests / ui-tests (22) (push) Successful in 36s
Update ReadTheDocs / update-readthedocs (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 4s
Pre-commit / pre-commit (push) Successful in 1m12s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 7s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
# What does this PR do? currently `RemoteProviderSpec` has an `AdapterSpec` embedded in it. Remove `AdapterSpec`, and put its leftover fields into `RemoteProviderSpec`. Additionally, many of the fields were duplicated between `InlineProviderSpec` and `RemoteProviderSpec`. Move these to `ProviderSpec` so they are shared. Fixup the distro codegen to use `RemoteProviderSpec` directly rather than `remote_provider_spec` which took an AdapterSpec and returned a full provider spec ## Test Plan existing distro tests should pass. Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
parent
e66103c09d
commit
8422bd102a
15 changed files with 381 additions and 503 deletions
|
@ -6,11 +6,10 @@
|
|||
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
RemoteProviderSpec,
|
||||
)
|
||||
|
||||
|
||||
|
@ -300,14 +299,16 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f
|
|||
Please refer to the sqlite-vec provider documentation.
|
||||
""",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="chromadb",
|
||||
pip_packages=["chromadb-client"],
|
||||
module="llama_stack.providers.remote.vector_io.chroma",
|
||||
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig",
|
||||
description="""
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="chromadb",
|
||||
provider_type="remote::chromadb",
|
||||
pip_packages=["chromadb-client"],
|
||||
module="llama_stack.providers.remote.vector_io.chroma",
|
||||
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
||||
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
@ -340,9 +341,6 @@ pip install chromadb
|
|||
## Documentation
|
||||
See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introduction) for more details about Chroma in general.
|
||||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
@ -387,14 +385,16 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
|
|||
|
||||
""",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="pgvector",
|
||||
pip_packages=["psycopg2-binary"],
|
||||
module="llama_stack.providers.remote.vector_io.pgvector",
|
||||
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig",
|
||||
description="""
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="pgvector",
|
||||
provider_type="remote::pgvector",
|
||||
pip_packages=["psycopg2-binary"],
|
||||
module="llama_stack.providers.remote.vector_io.pgvector",
|
||||
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
[PGVector](https://github.com/pgvector/pgvector) is a remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
That means you'll get fast and efficient vector retrieval.
|
||||
|
@ -495,19 +495,18 @@ docker pull pgvector/pgvector:pg17
|
|||
## Documentation
|
||||
See [PGVector's documentation](https://github.com/pgvector/pgvector) for more details about PGVector in general.
|
||||
""",
|
||||
),
|
||||
),
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="weaviate",
|
||||
provider_type="remote::weaviate",
|
||||
pip_packages=["weaviate-client"],
|
||||
module="llama_stack.providers.remote.vector_io.weaviate",
|
||||
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="weaviate",
|
||||
pip_packages=["weaviate-client"],
|
||||
module="llama_stack.providers.remote.vector_io.weaviate",
|
||||
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
|
||||
description="""
|
||||
description="""
|
||||
[Weaviate](https://weaviate.io/) is a vector database provider for Llama Stack.
|
||||
It allows you to store and query vectors directly within a Weaviate database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
@ -538,9 +537,6 @@ To install Weaviate see the [Weaviate quickstart documentation](https://weaviate
|
|||
## Documentation
|
||||
See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more details about Weaviate in general.
|
||||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
@ -594,28 +590,29 @@ docker pull qdrant/qdrant
|
|||
See the [Qdrant documentation](https://qdrant.tech/documentation/) for more details about Qdrant in general.
|
||||
""",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="qdrant",
|
||||
pip_packages=["qdrant-client"],
|
||||
module="llama_stack.providers.remote.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
description="""
|
||||
Please refer to the inline provider documentation.
|
||||
""",
|
||||
),
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="qdrant",
|
||||
provider_type="remote::qdrant",
|
||||
pip_packages=["qdrant-client"],
|
||||
module="llama_stack.providers.remote.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
Please refer to the inline provider documentation.
|
||||
""",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="milvus",
|
||||
pip_packages=["pymilvus>=2.4.10"],
|
||||
module="llama_stack.providers.remote.vector_io.milvus",
|
||||
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
|
||||
description="""
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="milvus",
|
||||
provider_type="remote::milvus",
|
||||
pip_packages=["pymilvus>=2.4.10"],
|
||||
module="llama_stack.providers.remote.vector_io.milvus",
|
||||
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
[Milvus](https://milvus.io/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly within a Milvus database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
@ -806,9 +803,6 @@ See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for m
|
|||
|
||||
For more details on TLS configuration, refer to the [TLS setup guide](https://milvus.io/docs/tls.md).
|
||||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue