Added llama stack-langChain integration example scripts

This commit is contained in:
Omar Abdelwahab 2025-08-20 11:15:31 -07:00
parent 55e9959f62
commit 849c12b9ac
3 changed files with 999 additions and 0 deletions

View file

@ -0,0 +1,306 @@
# LangChain + Llama Stack Document Processing
This repository contains two different implementations of document processing using LangChain and Llama Stack:
1. **`langchain_llamastack.py`** - Interactive CLI version
2. **`langchain_llamastack_ray.py`** - Ray Serve API version
Both versions provide AI-powered document processing capabilities including summarization, fact extraction, and question-answering.
---
## 📋 Prerequisites
### System Requirements
- Python 3.12+
- Ray Serve (for API version)
- Llama Stack server running on `http://localhost:8321/`
- Ollama or compatible model server
### Required Python Packages
```bash
pip install llama-stack-client langchain langchain-core langchain-community
pip install beautifulsoup4 markdownify readability-lxml requests
pip install ray[serve] starlette # For Ray Serve version only
```
### Environment Setup
```bash
# Create and activate virtual environment
python3.12 -m venv llama-env-py312
source llama-env-py312/bin/activate
# Install dependencies
pip install llama-stack-client langchain langchain-core langchain-community beautifulsoup4 markdownify readability-lxml requests ray[serve] starlette
```
---
## 🚀 Quick Start
### Start Llama Stack Server
Before running either version, ensure your Llama Stack server is running:
```bash
# Start Llama Stack server (example)
llama stack run your-config --port 8321
```
---
## 📖 Option 1: Interactive CLI Version (`langchain_llamastack_updated.py`)
### Features
- ✅ Interactive command-line interface
- ✅ Document loading from URLs and PDFs
- ✅ AI-powered summarization and fact extraction
- ✅ Question-answering based on document content
- ✅ Session-based document storage
### How to Run
```bash
# Activate environment
source llama-env-py312/bin/activate
# Run the interactive CLI
cd /home/omara/langchain_llamastack
python langchain_llamastack_updated.py
```
### Usage Commands
Once running, you can use these interactive commands:
```
🎯 Interactive Document Processing Demo
Commands:
load <url_or_path> - Process a document
ask <question> - Ask about the document
summary - Show document summary
facts - Show extracted facts
help - Show commands
quit - Exit demo
```
### Example Session
```
> load https://en.wikipedia.org/wiki/Artificial_intelligence
📄 Loading document from: https://en.wikipedia.org/wiki/Artificial_intelligence
✅ Loaded 45,832 characters
📝 Generating summary...
🔍 Extracting key facts...
✅ Processing complete!
> summary
📝 Summary:
Artificial intelligence (AI) is the simulation of human intelligence...
> ask What are the main types of AI?
💬 Q: What are the main types of AI?
📝 A: Based on the document, the main types of AI include...
> facts
🔍 Key Facts:
- AI was founded as an academic discipline in 1956
- Machine learning is a subset of AI...
> quit
👋 Thanks for exploring LangChain chains!
```
---
## 🌐 Option 2: Ray Serve API Version (`langchain_llamastack_ray.py`)
### Features
- ✅ RESTful HTTP API
- ✅ Persistent service (runs indefinitely)
- ✅ Multiple endpoints for different operations
- ✅ JSON request/response format
- ✅ Concurrent request handling
### How to Run
```bash
# Activate environment
source llama-env-py312/bin/activate
# Start the Ray Serve API
cd /home/omara/langchain_llamastack
python langchain_llamastack_ray.py
```
### Service Endpoints
| Method | Endpoint | Description | Parameters |
|--------|----------|-------------|------------|
| GET | `/` | Service status | None |
| POST | `/process` | Process document | `{"source": "url_or_path"}` |
| POST | `/ask` | Ask question | `{"question": "text", "source": "optional"}` |
| GET | `/summary` | Get summary | `?source=url` (optional) |
| GET | `/facts` | Get facts | `?source=url` (optional) |
| GET | `/docs` | List documents | None |
### API Usage Examples
#### Using curl:
```bash
# Check service status
curl http://localhost:8000/
# Process a document
curl -X POST http://localhost:8000/process \
-H 'Content-Type: application/json' \
-d '{"source": "https://en.wikipedia.org/wiki/Machine_learning"}'
# Ask a question
curl -X POST http://localhost:8000/ask \
-H 'Content-Type: application/json' \
-d '{"question": "What is machine learning?"}'
# Get summary
curl http://localhost:8000/summary
# Get facts
curl http://localhost:8000/facts
# List all processed documents
curl http://localhost:8000/docs
```
#### Using Python requests:
```python
import requests
# Process a document
response = requests.post(
"http://localhost:8000/process",
json={"source": "https://en.wikipedia.org/wiki/Deep_learning"}
)
print(response.json())
# Ask a question
response = requests.post(
"http://localhost:8000/ask",
json={"question": "What are neural networks?"}
)
print(response.json())
# Get facts
response = requests.get("http://localhost:8000/facts")
print(response.json())
```
---
## 🔧 Configuration
### Model Configuration
Both versions use these models by default:
- **Model ID**: `llama3.2:3b`
- **Llama Stack URL**: `http://localhost:8321/`
To change the model, edit the `model_id` parameter in the respective files.
### Supported Document Types
- ✅ **URLs**: Any web page (extracted using readability)
- ✅ **PDF files**: Local or remote PDF documents
- ❌ Plain text files (can be added if needed)
---
## 🛠️ Troubleshooting
### Common Issues
#### 1. Connection Refused to Llama Stack
**Error**: `Connection refused to http://localhost:8321/`
**Solution**:
- Ensure Llama Stack server is running
- Check if port 8321 is correct
- Verify network connectivity
#### 2. Model Not Found
**Error**: `Model not found: llama3.2:3b`
**Solution**:
- Check available models: `curl http://localhost:8321/models/list`
- Update `model_id` in the code to match available models
#### 3. Ray Serve Port Already in Use
**Error**: `Port 8000 already in use`
**Solution**:
```bash
# Kill process using port 8000
lsof -ti :8000 | xargs kill -9
# Or use a different port by modifying the code
```
#### 4. Missing Dependencies
**Error**: `ModuleNotFoundError: No module named 'ray'`
**Solution**:
```bash
pip install ray[serve] starlette
```
### Debug Mode
To enable verbose logging, add this to the beginning of either file:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```
---
## 📊 Performance Notes
### CLI Version
- **Pros**: Simple to use, interactive, good for testing
- **Cons**: Single-threaded, session-based only
- **Best for**: Development, testing, manual document analysis
### Ray Serve Version
- **Pros**: Concurrent requests, persistent service, API integration
- **Cons**: More complex setup, requires Ray
- **Best for**: Production, integration with other services, high throughput
---
## 🛑 Stopping Services
### CLI Version
- Press `Ctrl+C` or type `quit` in the interactive prompt
### Ray Serve Version
- Press `Ctrl+C` in the terminal running the service
- The service will gracefully shutdown and clean up resources
---
## 📝 Examples
### CLI Workflow
1. Start: `python langchain_llamastack_updated.py`
2. Load document: `load https://arxiv.org/pdf/2103.00020.pdf`
3. Get summary: `summary`
4. Ask questions: `ask What are the main contributions?`
5. Exit: `quit`
### API Workflow
1. Start: `python langchain_llamastack_ray.py`
2. Process: `curl -X POST http://localhost:8000/process -d '{"source": "https://example.com"}'`
3. Query: `curl -X POST http://localhost:8000/ask -d '{"question": "What is this about?"}'`
4. Stop: `Ctrl+C`
---
## 🤝 Contributing
To extend functionality:
1. Add new prompt templates for different analysis types
2. Support additional document formats
3. Add caching for processed documents
4. Implement user authentication for API version
---
## 📜 License
This project is for educational and research purposes.