Merge branch 'main' into content-extension

This commit is contained in:
Francisco Arceo 2025-08-13 14:04:47 -06:00 committed by GitHub
commit 84a26339c8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
73 changed files with 2416 additions and 506 deletions

View file

@ -8293,28 +8293,60 @@
"type": "array",
"items": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
"properties": {
"attributes": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
}
"description": "(Optional) Key-value attributes associated with the file"
},
"file_id": {
"type": "string",
"description": "Unique identifier of the file containing the result"
},
"filename": {
"type": "string",
"description": "Name of the file containing the result"
},
"score": {
"type": "number",
"description": "Relevance score for this search result (between 0 and 1)"
},
"text": {
"type": "string",
"description": "Text content of the search result"
}
},
"additionalProperties": false,
"required": [
"attributes",
"file_id",
"filename",
"score",
"text"
],
"title": "OpenAIResponseOutputMessageFileSearchToolCallResults",
"description": "Search results returned by the file search operation."
},
"description": "(Optional) Search results returned by the file search operation"
}
@ -8515,6 +8547,13 @@
"$ref": "#/components/schemas/OpenAIResponseInputTool"
}
},
"include": {
"type": "array",
"items": {
"type": "string"
},
"description": "(Optional) Additional fields to include in the response."
},
"max_infer_iters": {
"type": "integer"
}
@ -16571,7 +16610,7 @@
"additionalProperties": {
"type": "number"
},
"description": "A list of the categories along with their scores as predicted by model. Required set of categories that need to be in response - violence - violence/graphic - harassment - harassment/threatening - hate - hate/threatening - illicit - illicit/violent - sexual - sexual/minors - self-harm - self-harm/intent - self-harm/instructions"
"description": "A list of the categories along with their scores as predicted by model."
},
"user_message": {
"type": "string"

View file

@ -6021,14 +6021,44 @@ components:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
properties:
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Key-value attributes associated with the file
file_id:
type: string
description: >-
Unique identifier of the file containing the result
filename:
type: string
description: Name of the file containing the result
score:
type: number
description: >-
Relevance score for this search result (between 0 and 1)
text:
type: string
description: Text content of the search result
additionalProperties: false
required:
- attributes
- file_id
- filename
- score
- text
title: >-
OpenAIResponseOutputMessageFileSearchToolCallResults
description: >-
Search results returned by the file search operation.
description: >-
(Optional) Search results returned by the file search operation
additionalProperties: false
@ -6188,6 +6218,12 @@ components:
type: array
items:
$ref: '#/components/schemas/OpenAIResponseInputTool'
include:
type: array
items:
type: string
description: >-
(Optional) Additional fields to include in the response.
max_infer_iters:
type: integer
additionalProperties: false
@ -12314,10 +12350,6 @@ components:
type: number
description: >-
A list of the categories along with their scores as predicted by model.
Required set of categories that need to be in response - violence - violence/graphic
- harassment - harassment/threatening - hate - hate/threatening - illicit
- illicit/violent - sexual - sexual/minors - self-harm - self-harm/intent
- self-harm/instructions
user_message:
type: string
metadata:

View file

@ -111,7 +111,7 @@ name = "llama-stack-api-weather"
version = "0.1.0"
description = "Weather API for Llama Stack"
readme = "README.md"
requires-python = ">=3.10"
requires-python = ">=3.12"
dependencies = ["llama-stack", "pydantic"]
[build-system]
@ -231,7 +231,7 @@ name = "llama-stack-provider-kaze"
version = "0.1.0"
description = "Kaze weather provider for Llama Stack"
readme = "README.md"
requires-python = ">=3.10"
requires-python = ">=3.12"
dependencies = ["llama-stack", "pydantic", "aiohttp"]
[build-system]

View file

@ -2,7 +2,9 @@
Llama Stack (LLS) provides two different APIs for building AI applications with tool calling capabilities: the **Agents API** and the **OpenAI Responses API**. While both enable AI systems to use tools, and maintain full conversation history, they serve different use cases and have distinct characteristics.
> **Note:** For simple and basic inferencing, you may want to use the [Chat Completions API](https://llama-stack.readthedocs.io/en/latest/providers/index.html#chat-completions) directly, before progressing to Agents or Responses API.
```{note}
For simple and basic inferencing, you may want to use the [Chat Completions API](https://llama-stack.readthedocs.io/en/latest/providers/index.html#chat-completions) directly, before progressing to Agents or Responses API.
```
## Overview

View file

@ -76,7 +76,9 @@ Features:
- Context retrieval with token limits
> **Note:** By default, llama stack run.yaml defines toolgroups for web search, wolfram alpha and rag, that are provided by tavily-search, wolfram-alpha and rag providers.
```{note}
By default, llama stack run.yaml defines toolgroups for web search, wolfram alpha and rag, that are provided by tavily-search, wolfram-alpha and rag providers.
```
## Model Context Protocol (MCP)

View file

@ -2,17 +2,6 @@
```{include} ../../../CONTRIBUTING.md
```
## Testing
See the [Test Page](testing.md) which describes how to test your changes.
```{toctree}
:maxdepth: 1
:hidden:
:caption: Testing
testing
```
## Adding a New Provider
See the [Adding a New API Provider Page](new_api_provider.md) which describes how to add new API providers to the Stack.
@ -27,3 +16,14 @@ See the [External Provider Page](../providers/external/index.md) which describes
new_api_provider
new_vector_database
```
## Testing
See the [Test Page](testing.md) which describes how to test your changes.
```{toctree}
:maxdepth: 1
:hidden:
:caption: Testing
testing
```

View file

@ -0,0 +1,57 @@
#!/usr/bin/env bash
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Deploys the benchmark-specific components on top of the base k8s deployment (../k8s/apply.sh).
export MOCK_INFERENCE_PORT=8080
export STREAM_DELAY_SECONDS=0.005
export POSTGRES_USER=llamastack
export POSTGRES_DB=llamastack
export POSTGRES_PASSWORD=llamastack
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export MOCK_INFERENCE_MODEL=mock-inference
# Use llama-stack-benchmark-service as the benchmark server
export LOCUST_HOST=http://llama-stack-benchmark-service:8323
export LOCUST_BASE_PATH=/v1/openai/v1
# Use vllm-service as the benchmark server
# export LOCUST_HOST=http://vllm-server:8000
# export LOCUST_BASE_PATH=/v1
export BENCHMARK_INFERENCE_MODEL=$INFERENCE_MODEL
set -euo pipefail
set -x
# Deploy benchmark-specific components
# Deploy OpenAI mock server
kubectl create configmap openai-mock --from-file=openai-mock-server.py \
--dry-run=client -o yaml | kubectl apply --validate=false -f -
envsubst < openai-mock-deployment.yaml | kubectl apply --validate=false -f -
# Create configmap with our custom stack config
kubectl create configmap llama-stack-config --from-file=stack_run_config.yaml \
--dry-run=client -o yaml > stack-configmap.yaml
kubectl apply --validate=false -f stack-configmap.yaml
# Deploy our custom llama stack server (overriding the base one)
envsubst < stack-k8s.yaml.template | kubectl apply --validate=false -f -
# Deploy Locust load testing
kubectl create configmap locust-script --from-file=locustfile.py \
--dry-run=client -o yaml | kubectl apply --validate=false -f -
envsubst < locust-k8s.yaml | kubectl apply --validate=false -f -

View file

@ -0,0 +1,131 @@
apiVersion: apps/v1
kind: Deployment
metadata:
name: locust-master
labels:
app: locust
role: master
spec:
replicas: 1
selector:
matchLabels:
app: locust
role: master
template:
metadata:
labels:
app: locust
role: master
spec:
containers:
- name: locust-master
image: locustio/locust:2.31.8
ports:
- containerPort: 8089 # Web UI
- containerPort: 5557 # Master communication
env:
- name: LOCUST_HOST
value: "${LOCUST_HOST}"
- name: LOCUST_LOCUSTFILE
value: "/locust/locustfile.py"
- name: LOCUST_WEB_HOST
value: "0.0.0.0"
- name: LOCUST_MASTER
value: "true"
- name: LOCUST_BASE_PATH
value: "${LOCUST_BASE_PATH}"
- name: INFERENCE_MODEL
value: "${BENCHMARK_INFERENCE_MODEL}"
volumeMounts:
- name: locust-script
mountPath: /locust
command: ["locust"]
args:
- "--master"
- "--web-host=0.0.0.0"
- "--web-port=8089"
- "--host=${LOCUST_HOST}"
- "--locustfile=/locust/locustfile.py"
volumes:
- name: locust-script
configMap:
name: locust-script
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: locust-worker
labels:
app: locust
role: worker
spec:
replicas: 2 # Start with 2 workers, can be scaled up
selector:
matchLabels:
app: locust
role: worker
template:
metadata:
labels:
app: locust
role: worker
spec:
containers:
- name: locust-worker
image: locustio/locust:2.31.8
env:
- name: LOCUST_HOST
value: "${LOCUST_HOST}"
- name: LOCUST_LOCUSTFILE
value: "/locust/locustfile.py"
- name: LOCUST_MASTER_HOST
value: "locust-master-service"
- name: LOCUST_MASTER_PORT
value: "5557"
- name: INFERENCE_MODEL
value: "${BENCHMARK_INFERENCE_MODEL}"
- name: LOCUST_BASE_PATH
value: "${LOCUST_BASE_PATH}"
volumeMounts:
- name: locust-script
mountPath: /locust
command: ["locust"]
args:
- "--worker"
- "--master-host=locust-master-service"
- "--master-port=5557"
- "--locustfile=/locust/locustfile.py"
volumes:
- name: locust-script
configMap:
name: locust-script
---
apiVersion: v1
kind: Service
metadata:
name: locust-master-service
spec:
selector:
app: locust
role: master
ports:
- name: web-ui
port: 8089
targetPort: 8089
- name: master-comm
port: 5557
targetPort: 5557
type: ClusterIP
---
apiVersion: v1
kind: Service
metadata:
name: locust-web-ui
spec:
selector:
app: locust
role: master
ports:
- port: 8089
targetPort: 8089
type: ClusterIP # Keep internal, use port-forward to access

View file

@ -0,0 +1,78 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Locust load testing script for Llama Stack with Prism mock OpenAI provider.
"""
import random
from locust import HttpUser, task, between
import os
base_path = os.getenv("LOCUST_BASE_PATH", "/v1/openai/v1")
MODEL_ID = os.getenv("INFERENCE_MODEL")
class LlamaStackUser(HttpUser):
wait_time = between(0.0, 0.0001)
def on_start(self):
"""Setup authentication and test data."""
# No auth required for benchmark server
self.headers = {
"Content-Type": "application/json"
}
# Test messages of varying lengths
self.test_messages = [
[{"role": "user", "content": "Hi"}],
[{"role": "user", "content": "What is the capital of France?"}],
[{"role": "user", "content": "Explain quantum physics in simple terms."}],
[{"role": "user", "content": "Write a short story about a robot learning to paint."}],
[
{"role": "user", "content": "What is machine learning?"},
{"role": "assistant", "content": "Machine learning is a subset of AI..."},
{"role": "user", "content": "Can you give me a practical example?"}
]
]
@task(weight=100)
def chat_completion_streaming(self):
"""Test streaming chat completion (20% of requests)."""
messages = random.choice(self.test_messages)
payload = {
"model": MODEL_ID,
"messages": messages,
"stream": True,
"max_tokens": 100
}
with self.client.post(
f"{base_path}/chat/completions",
headers=self.headers,
json=payload,
stream=True,
catch_response=True
) as response:
if response.status_code == 200:
chunks_received = 0
try:
for line in response.iter_lines():
if line:
line_str = line.decode('utf-8')
if line_str.startswith('data: '):
chunks_received += 1
if line_str.strip() == 'data: [DONE]':
break
if chunks_received > 0:
response.success()
else:
response.failure("No streaming chunks received")
except Exception as e:
response.failure(f"Streaming error: {e}")
else:
response.failure(f"HTTP {response.status_code}: {response.text}")

View file

@ -0,0 +1,52 @@
apiVersion: apps/v1
kind: Deployment
metadata:
name: openai-mock
labels:
app: openai-mock
spec:
replicas: 1
selector:
matchLabels:
app: openai-mock
template:
metadata:
labels:
app: openai-mock
spec:
containers:
- name: openai-mock
image: python:3.12-slim
ports:
- containerPort: ${MOCK_INFERENCE_PORT}
env:
- name: PORT
value: "${MOCK_INFERENCE_PORT}"
- name: MOCK_MODELS
value: "${MOCK_INFERENCE_MODEL}"
- name: STREAM_DELAY_SECONDS
value: "${STREAM_DELAY_SECONDS}"
command: ["sh", "-c"]
args:
- |
pip install flask &&
python /app/openai-mock-server.py --port ${MOCK_INFERENCE_PORT}
volumeMounts:
- name: openai-mock-script
mountPath: /app
volumes:
- name: openai-mock-script
configMap:
name: openai-mock
---
apiVersion: v1
kind: Service
metadata:
name: openai-mock-service
spec:
selector:
app: openai-mock
ports:
- port: 8080
targetPort: 8080
type: ClusterIP

View file

@ -0,0 +1,190 @@
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
OpenAI-compatible mock server that returns:
- Hardcoded /models response for consistent validation
- Valid OpenAI-formatted chat completion responses with dynamic content
"""
from flask import Flask, request, jsonify, Response
import time
import random
import uuid
import json
import argparse
import os
app = Flask(__name__)
# Models from environment variables
def get_models():
models_str = os.getenv("MOCK_MODELS", "mock-inference")
model_ids = [m.strip() for m in models_str.split(",") if m.strip()]
return {
"object": "list",
"data": [
{
"id": model_id,
"object": "model",
"created": 1234567890,
"owned_by": "vllm"
}
for model_id in model_ids
]
}
def generate_random_text(length=50):
"""Generate random but coherent text for responses."""
words = [
"Hello", "there", "I'm", "an", "AI", "assistant", "ready", "to", "help", "you",
"with", "your", "questions", "and", "tasks", "today", "Let", "me","know", "what",
"you'd", "like", "to", "discuss", "or", "explore", "together", "I", "can", "assist",
"with", "various", "topics", "including", "coding", "writing", "analysis", "and", "more"
]
return " ".join(random.choices(words, k=length))
@app.route('/models', methods=['GET'])
def list_models():
models = get_models()
print(f"[MOCK] Returning models: {[m['id'] for m in models['data']]}")
return jsonify(models)
@app.route('/chat/completions', methods=['POST'])
def chat_completions():
"""Return OpenAI-formatted chat completion responses."""
data = request.get_json()
default_model = get_models()['data'][0]['id']
model = data.get('model', default_model)
messages = data.get('messages', [])
stream = data.get('stream', False)
print(f"[MOCK] Chat completion request - model: {model}, stream: {stream}")
if stream:
return handle_streaming_completion(model, messages)
else:
return handle_non_streaming_completion(model, messages)
def handle_non_streaming_completion(model, messages):
response_text = generate_random_text(random.randint(20, 80))
# Calculate realistic token counts
prompt_tokens = sum(len(str(msg.get('content', '')).split()) for msg in messages)
completion_tokens = len(response_text.split())
response = {
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
return jsonify(response)
def handle_streaming_completion(model, messages):
def generate_stream():
# Generate response text
full_response = generate_random_text(random.randint(30, 100))
words = full_response.split()
# Send initial chunk
initial_chunk = {
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"role": "assistant", "content": ""}
}
]
}
yield f"data: {json.dumps(initial_chunk)}\n\n"
# Send word by word
for i, word in enumerate(words):
chunk = {
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": f"{word} " if i < len(words) - 1 else word}
}
]
}
yield f"data: {json.dumps(chunk)}\n\n"
# Configurable delay to simulate realistic streaming
stream_delay = float(os.getenv("STREAM_DELAY_SECONDS", "0.005"))
time.sleep(stream_delay)
# Send final chunk
final_chunk = {
"id": f"chatcmpl-{uuid.uuid4().hex[:8]}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": ""},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(final_chunk)}\n\n"
yield "data: [DONE]\n\n"
return Response(
generate_stream(),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': '*',
}
)
@app.route('/health', methods=['GET'])
def health():
return jsonify({"status": "healthy", "type": "openai-mock"})
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OpenAI-compatible mock server')
parser.add_argument('--port', type=int, default=8081,
help='Port to run the server on (default: 8081)')
args = parser.parse_args()
port = args.port
models = get_models()
print("Starting OpenAI-compatible mock server...")
print(f"- /models endpoint with: {[m['id'] for m in models['data']]}")
print("- OpenAI-formatted chat/completion responses with dynamic content")
print("- Streaming support with valid SSE format")
print(f"- Listening on: http://0.0.0.0:{port}")
app.run(host='0.0.0.0', port=port, debug=False)

View file

@ -0,0 +1,143 @@
apiVersion: v1
data:
stack_run_config.yaml: |
version: '2'
image_name: kubernetes-benchmark-demo
apis:
- agents
- inference
- safety
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm-inference
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: vllm-safety
provider_type: remote::vllm
config:
url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: mock-vllm-inference
provider_type: remote::vllm
config:
url: http://openai-mock-service:${env.MOCK_INFERENCE_PORT}
max_tokens: 4096
api_token: fake
tls_verify: false
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:+}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:+}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
- model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
- model_id: ${env.SAFETY_MODEL}
provider_id: vllm-safety
model_type: llm
- model_id: ${env.MOCK_INFERENCE_MODEL}
provider_id: mock-vllm-inference
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8323
kind: ConfigMap
metadata:
creationTimestamp: null
name: llama-stack-config

View file

@ -0,0 +1,87 @@
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: llama-benchmark-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: llama-stack-benchmark-server
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: llama-stack-benchmark
app.kubernetes.io/component: server
template:
metadata:
labels:
app.kubernetes.io/name: llama-stack-benchmark
app.kubernetes.io/component: server
spec:
containers:
- name: llama-stack-benchmark
image: llamastack/distribution-starter:latest
imagePullPolicy: Always # since we have specified latest instead of a version
env:
- name: ENABLE_CHROMADB
value: "true"
- name: CHROMADB_URL
value: http://chromadb.default.svc.cluster.local:6000
- name: POSTGRES_HOST
value: postgres-server.default.svc.cluster.local
- name: POSTGRES_PORT
value: "5432"
- name: INFERENCE_MODEL
value: "${INFERENCE_MODEL}"
- name: SAFETY_MODEL
value: "${SAFETY_MODEL}"
- name: TAVILY_SEARCH_API_KEY
value: "${TAVILY_SEARCH_API_KEY}"
- name: MOCK_INFERENCE_PORT
value: "${MOCK_INFERENCE_PORT}"
- name: VLLM_URL
value: http://vllm-server.default.svc.cluster.local:8000/v1
- name: VLLM_MAX_TOKENS
value: "3072"
- name: VLLM_SAFETY_URL
value: http://vllm-server-safety.default.svc.cluster.local:8001/v1
- name: VLLM_TLS_VERIFY
value: "false"
- name: MOCK_INFERENCE_MODEL
value: "${MOCK_INFERENCE_MODEL}"
command: ["python", "-m", "llama_stack.core.server.server", "/etc/config/stack_run_config.yaml", "--port", "8323"]
ports:
- containerPort: 8323
volumeMounts:
- name: llama-storage
mountPath: /root/.llama
- name: llama-config
mountPath: /etc/config
volumes:
- name: llama-storage
persistentVolumeClaim:
claimName: llama-benchmark-pvc
- name: llama-config
configMap:
name: llama-stack-config
---
apiVersion: v1
kind: Service
metadata:
name: llama-stack-benchmark-service
spec:
selector:
app.kubernetes.io/name: llama-stack-benchmark
app.kubernetes.io/component: server
ports:
- name: http
port: 8323
targetPort: 8323
type: ClusterIP

View file

@ -0,0 +1,136 @@
version: '2'
image_name: kubernetes-benchmark-demo
apis:
- agents
- inference
- safety
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm-inference
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: vllm-safety
provider_type: remote::vllm
config:
url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: mock-vllm-inference
provider_type: remote::vllm
config:
url: http://openai-mock-service:${env.MOCK_INFERENCE_PORT}
max_tokens: 4096
api_token: fake
tls_verify: false
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:+}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:+}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
- model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
- model_id: ${env.SAFETY_MODEL}
provider_id: vllm-safety
model_type: llm
- model_id: ${env.MOCK_INFERENCE_MODEL}
provider_id: mock-vllm-inference
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8323

View file

@ -40,19 +40,19 @@ spec:
value: "3072"
- name: VLLM_SAFETY_URL
value: http://vllm-server-safety.default.svc.cluster.local:8001/v1
- name: VLLM_TLS_VERIFY
value: "false"
- name: POSTGRES_HOST
value: postgres-server.default.svc.cluster.local
- name: POSTGRES_PORT
value: "5432"
- name: VLLM_TLS_VERIFY
value: "false"
- name: INFERENCE_MODEL
value: "${INFERENCE_MODEL}"
- name: SAFETY_MODEL
value: "${SAFETY_MODEL}"
- name: TAVILY_SEARCH_API_KEY
value: "${TAVILY_SEARCH_API_KEY}"
command: ["python", "-m", "llama_stack.core.server.server", "--config", "/etc/config/stack_run_config.yaml", "--port", "8321"]
command: ["python", "-m", "llama_stack.core.server.server", "/etc/config/stack_run_config.yaml", "--port", "8321"]
ports:
- containerPort: 8321
volumeMounts:

View file

@ -226,7 +226,7 @@ uv init
name = "llama-stack-provider-ollama"
version = "0.1.0"
description = "Ollama provider for Llama Stack"
requires-python = ">=3.10"
requires-python = ">=3.12"
dependencies = ["llama-stack", "pydantic", "ollama", "aiohttp"]
```

View file

@ -21,5 +21,7 @@ kvstore:
## Deprecation Notice
⚠️ **Warning**: Please use the `inline::faiss` provider instead.
```{warning}
Please use the `inline::faiss` provider instead.
```

View file

@ -25,5 +25,7 @@ kvstore:
## Deprecation Notice
⚠️ **Warning**: Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.
```{warning}
Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.
```

View file

@ -204,7 +204,10 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
| `config` | `dict` | No | {} | This configuration allows additional fields to be passed through to the underlying Milvus client. See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general. |
> **Note**: This configuration class accepts additional fields beyond those listed above. You can pass any additional configuration options that will be forwarded to the underlying provider.
```{note}
This configuration class accepts additional fields beyond those listed above. You can pass any additional configuration options that will be forwarded to the underlying provider.
```
## Sample Configuration

View file

@ -128,7 +128,9 @@ llama download --source huggingface --model-id Prompt-Guard-86M --ignore-pattern
**Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
```{tip}
Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
```
## List the downloaded models

View file

@ -152,7 +152,9 @@ llama download --source huggingface --model-id Prompt-Guard-86M --ignore-pattern
**Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
```{tip}
Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
```
## List the downloaded models