mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-03 09:21:45 +00:00
add unit tests for chat agent
This commit is contained in:
parent
db2ec110a1
commit
854fef7478
4 changed files with 262 additions and 207 deletions
|
@ -13,7 +13,7 @@ import secrets
|
|||
import string
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import Any, AsyncGenerator, Dict, List, Optional
|
||||
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import httpx
|
||||
|
@ -76,7 +76,6 @@ def make_random_string(length: int = 8):
|
|||
|
||||
|
||||
TOOLS_ATTACHMENT_KEY_REGEX = re.compile(r"__tools_attachment__=(\{.*?\})")
|
||||
MEMORY_TOOL_GROUP_ID = "builtin::memory"
|
||||
MEMORY_QUERY_TOOL = "query_memory"
|
||||
WEB_SEARCH_TOOL = "web_search"
|
||||
|
||||
|
@ -382,6 +381,9 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
session_id, documents, input_messages, tool_defs
|
||||
)
|
||||
if MEMORY_QUERY_TOOL in tool_defs and len(input_messages) > 0:
|
||||
memory_tool_group = tool_to_group.get(MEMORY_QUERY_TOOL, None)
|
||||
if memory_tool_group is None:
|
||||
raise ValueError(f"Memory tool group not found for {MEMORY_QUERY_TOOL}")
|
||||
with tracing.span(MEMORY_QUERY_TOOL) as span:
|
||||
step_id = str(uuid.uuid4())
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
|
@ -394,7 +396,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
query_args = {
|
||||
"messages": [msg.content for msg in input_messages],
|
||||
**toolgroup_args.get(MEMORY_TOOL_GROUP_ID, {}),
|
||||
**toolgroup_args.get(memory_tool_group, {}),
|
||||
}
|
||||
|
||||
session_info = await self.storage.get_session_info(session_id)
|
||||
|
@ -484,14 +486,20 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
stop_reason = None
|
||||
|
||||
with tracing.span("inference") as span:
|
||||
|
||||
def is_memory_group(tool):
|
||||
memory_tool_group = tool_to_group.get(MEMORY_QUERY_TOOL, None)
|
||||
has_memory_tool = MEMORY_QUERY_TOOL in tool_defs
|
||||
return (
|
||||
has_memory_tool
|
||||
and tool_to_group.get(tool.tool_name, None) != memory_tool_group
|
||||
)
|
||||
|
||||
async for chunk in await self.inference_api.chat_completion(
|
||||
self.agent_config.model,
|
||||
input_messages,
|
||||
tools=[
|
||||
tool
|
||||
for tool in tool_defs.values()
|
||||
if tool_to_group.get(tool.tool_name, None)
|
||||
!= MEMORY_TOOL_GROUP_ID
|
||||
tool for tool in tool_defs.values() if not is_memory_group(tool)
|
||||
],
|
||||
tool_prompt_format=self.agent_config.tool_prompt_format,
|
||||
stream=True,
|
||||
|
@ -698,8 +706,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
n_iter += 1
|
||||
|
||||
async def _get_tool_defs(
|
||||
self, toolgroups_for_turn: Optional[List[AgentToolGroup]]
|
||||
) -> Dict[str, ToolDefinition]:
|
||||
self, toolgroups_for_turn: Optional[List[AgentToolGroup]] = None
|
||||
) -> Tuple[Dict[str, ToolDefinition], Dict[str, str]]:
|
||||
# Determine which tools to include
|
||||
agent_config_toolgroups = set(
|
||||
(
|
||||
|
|
|
@ -4,21 +4,25 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import tempfile
|
||||
from typing import AsyncIterator, List, Optional, Union
|
||||
|
||||
import pytest
|
||||
from llama_models.llama3.api.datatypes import BuiltinTool
|
||||
|
||||
from llama_stack.apis.agents import (
|
||||
AgentConfig,
|
||||
AgentTurnCreateRequest,
|
||||
AgentTurnResponseTurnCompletePayload,
|
||||
StepType,
|
||||
)
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
|
@ -27,13 +31,24 @@ from llama_stack.apis.inference import (
|
|||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.memory import MemoryBank
|
||||
from llama_stack.apis.memory_banks import BankParams, VectorMemoryBank
|
||||
from llama_stack.apis.safety import RunShieldResponse
|
||||
|
||||
from ..agents import (
|
||||
AGENT_INSTANCES_BY_ID,
|
||||
MetaReferenceAgentsImpl,
|
||||
MetaReferenceInferenceConfig,
|
||||
from llama_stack.apis.tools import (
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolHost,
|
||||
ToolInvocationResult,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
|
||||
MEMORY_QUERY_TOOL,
|
||||
)
|
||||
from llama_stack.providers.inline.agents.meta_reference.agents import (
|
||||
MetaReferenceAgentsImpl,
|
||||
MetaReferenceAgentsImplConfig,
|
||||
)
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
|
||||
class MockInferenceAPI:
|
||||
|
@ -48,10 +63,10 @@ class MockInferenceAPI:
|
|||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncIterator[
|
||||
Union[ChatCompletionResponseStreamChunk, ChatCompletionResponse]
|
||||
) -> Union[
|
||||
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
|
||||
]:
|
||||
if stream:
|
||||
async def stream_response():
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type="start",
|
||||
|
@ -65,19 +80,7 @@ class MockInferenceAPI:
|
|||
delta="AI is a fascinating field...",
|
||||
)
|
||||
)
|
||||
# yield ChatCompletionResponseStreamChunk(
|
||||
# event=ChatCompletionResponseEvent(
|
||||
# event_type="progress",
|
||||
# delta=ToolCallDelta(
|
||||
# content=ToolCall(
|
||||
# call_id="123",
|
||||
# tool_name=BuiltinTool.brave_search.value,
|
||||
# arguments={"query": "AI history"},
|
||||
# ),
|
||||
# parse_status="success",
|
||||
# ),
|
||||
# )
|
||||
# )
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type="complete",
|
||||
|
@ -85,12 +88,17 @@ class MockInferenceAPI:
|
|||
stop_reason="end_of_turn",
|
||||
)
|
||||
)
|
||||
|
||||
if stream:
|
||||
return stream_response()
|
||||
else:
|
||||
yield ChatCompletionResponse(
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
role="assistant", content="Mock response", stop_reason="end_of_turn"
|
||||
role="assistant",
|
||||
content="Mock response",
|
||||
stop_reason="end_of_turn",
|
||||
),
|
||||
logprobs=[0.1, 0.2, 0.3] if logprobs else None,
|
||||
logprobs={"token_logprobs": [0.1, 0.2, 0.3]} if logprobs else None,
|
||||
)
|
||||
|
||||
|
||||
|
@ -165,6 +173,99 @@ class MockMemoryAPI:
|
|||
self.documents[bank_id].pop(doc_id, None)
|
||||
|
||||
|
||||
class MockToolGroupsAPI:
|
||||
async def register_tool_group(
|
||||
self, toolgroup_id: str, provider_id: str, mcp_endpoint=None, args=None
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup:
|
||||
return ToolGroup(
|
||||
identifier=toolgroup_id,
|
||||
provider_resource_id=toolgroup_id,
|
||||
)
|
||||
|
||||
async def list_tool_groups(self) -> List[ToolGroup]:
|
||||
return []
|
||||
|
||||
async def list_tools(self, tool_group_id: Optional[str] = None) -> List[Tool]:
|
||||
if tool_group_id == MEMORY_TOOLGROUP:
|
||||
return [
|
||||
Tool(
|
||||
identifier=MEMORY_QUERY_TOOL,
|
||||
provider_resource_id=MEMORY_QUERY_TOOL,
|
||||
toolgroup_id=MEMORY_TOOLGROUP,
|
||||
tool_host=ToolHost.client,
|
||||
description="Mock tool",
|
||||
provider_id="mock_provider",
|
||||
parameters=[],
|
||||
)
|
||||
]
|
||||
if tool_group_id == CODE_INTERPRETER_TOOLGROUP:
|
||||
return [
|
||||
Tool(
|
||||
identifier="code_interpreter",
|
||||
provider_resource_id="code_interpreter",
|
||||
toolgroup_id=CODE_INTERPRETER_TOOLGROUP,
|
||||
built_in_type=BuiltinTool.code_interpreter,
|
||||
tool_host=ToolHost.client,
|
||||
description="Mock tool",
|
||||
provider_id="mock_provider",
|
||||
parameters=[],
|
||||
)
|
||||
]
|
||||
return []
|
||||
|
||||
async def get_tool(self, tool_name: str) -> Tool:
|
||||
return Tool(
|
||||
identifier=tool_name,
|
||||
provider_resource_id=tool_name,
|
||||
toolgroup_id="mock_group",
|
||||
tool_host=ToolHost.client,
|
||||
description="Mock tool",
|
||||
provider_id="mock_provider",
|
||||
parameters=[],
|
||||
)
|
||||
|
||||
async def unregister_tool_group(self, tool_group_id: str) -> None:
|
||||
pass
|
||||
|
||||
|
||||
class MockToolRuntimeAPI:
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
) -> List[ToolDef]:
|
||||
return []
|
||||
|
||||
async def invoke_tool(self, tool_name: str, args: dict) -> ToolInvocationResult:
|
||||
return ToolInvocationResult(content={"result": "Mock tool result"})
|
||||
|
||||
|
||||
class MockMemoryBanksAPI:
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
return []
|
||||
|
||||
async def get_memory_bank(self, memory_bank_id: str) -> Optional[MemoryBank]:
|
||||
return None
|
||||
|
||||
async def register_memory_bank(
|
||||
self,
|
||||
memory_bank_id: str,
|
||||
params: BankParams,
|
||||
provider_id: Optional[str] = None,
|
||||
provider_memory_bank_id: Optional[str] = None,
|
||||
) -> MemoryBank:
|
||||
return VectorMemoryBank(
|
||||
identifier=memory_bank_id,
|
||||
provider_resource_id=provider_memory_bank_id or memory_bank_id,
|
||||
embedding_model="mock_model",
|
||||
chunk_size_in_tokens=512,
|
||||
)
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
pass
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_inference_api():
|
||||
return MockInferenceAPI()
|
||||
|
@ -181,64 +282,107 @@ def mock_memory_api():
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
async def chat_agent(mock_inference_api, mock_safety_api, mock_memory_api):
|
||||
def mock_tool_groups_api():
|
||||
return MockToolGroupsAPI()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_tool_runtime_api():
|
||||
return MockToolRuntimeAPI()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_memory_banks_api():
|
||||
return MockMemoryBanksAPI()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def get_agents_impl(
|
||||
mock_inference_api,
|
||||
mock_safety_api,
|
||||
mock_memory_api,
|
||||
mock_memory_banks_api,
|
||||
mock_tool_runtime_api,
|
||||
mock_tool_groups_api,
|
||||
):
|
||||
sqlite_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
|
||||
impl = MetaReferenceAgentsImpl(
|
||||
config=MetaReferenceInferenceConfig(),
|
||||
config=MetaReferenceAgentsImplConfig(
|
||||
persistence_store=SqliteKVStoreConfig(
|
||||
db_name=sqlite_file.name,
|
||||
),
|
||||
),
|
||||
inference_api=mock_inference_api,
|
||||
safety_api=mock_safety_api,
|
||||
memory_api=mock_memory_api,
|
||||
memory_banks_api=mock_memory_banks_api,
|
||||
tool_runtime_api=mock_tool_runtime_api,
|
||||
tool_groups_api=mock_tool_groups_api,
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def get_chat_agent(get_agents_impl):
|
||||
impl = await get_agents_impl
|
||||
agent_config = AgentConfig(
|
||||
model="test_model",
|
||||
instructions="You are a helpful assistant.",
|
||||
sampling_params=SamplingParams(),
|
||||
tools=[
|
||||
# SearchToolDefinition(
|
||||
# name="brave_search",
|
||||
# api_key="test_key",
|
||||
# ),
|
||||
],
|
||||
toolgroups=[],
|
||||
tool_choice=ToolChoice.auto,
|
||||
enable_session_persistence=False,
|
||||
input_shields=[],
|
||||
output_shields=[],
|
||||
input_shields=["test_shield"],
|
||||
)
|
||||
response = await impl.create_agent(agent_config)
|
||||
agent = AGENT_INSTANCES_BY_ID[response.agent_id]
|
||||
return agent
|
||||
return await impl.get_agent(response.agent_id)
|
||||
|
||||
|
||||
MEMORY_TOOLGROUP = "builtin::memory"
|
||||
CODE_INTERPRETER_TOOLGROUP = "builtin::code_interpreter"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def get_chat_agent_with_tools(get_agents_impl, request):
|
||||
impl = await get_agents_impl
|
||||
toolgroups = request.param
|
||||
agent_config = AgentConfig(
|
||||
model="test_model",
|
||||
instructions="You are a helpful assistant.",
|
||||
toolgroups=toolgroups,
|
||||
tool_choice=ToolChoice.auto,
|
||||
enable_session_persistence=False,
|
||||
input_shields=["test_shield"],
|
||||
)
|
||||
response = await impl.create_agent(agent_config)
|
||||
return await impl.get_agent(response.agent_id)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_chat_agent_create_session(chat_agent):
|
||||
session = chat_agent.create_session("Test Session")
|
||||
assert session.session_name == "Test Session"
|
||||
assert session.turns == []
|
||||
assert session.session_id in chat_agent.sessions
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_chat_agent_create_and_execute_turn(chat_agent):
|
||||
session = chat_agent.create_session("Test Session")
|
||||
async def test_chat_agent_create_and_execute_turn(get_chat_agent):
|
||||
chat_agent = await get_chat_agent
|
||||
session_id = await chat_agent.create_session("Test Session")
|
||||
request = AgentTurnCreateRequest(
|
||||
agent_id="random",
|
||||
session_id=session.session_id,
|
||||
agent_id=chat_agent.agent_id,
|
||||
session_id=session_id,
|
||||
messages=[UserMessage(content="Hello")],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
responses = []
|
||||
async for response in chat_agent.create_and_execute_turn(request):
|
||||
responses.append(response)
|
||||
|
||||
print(responses)
|
||||
assert len(responses) > 0
|
||||
assert len(responses) == 4 # TurnStart, StepStart, StepComplete, TurnComplete
|
||||
assert (
|
||||
len(responses) == 7
|
||||
) # TurnStart, ShieldCallStart, ShieldCallComplete, StepStart, StepProgress, StepComplete, TurnComplete
|
||||
assert responses[0].event.payload.turn_id is not None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_run_multiple_shields_wrapper(chat_agent):
|
||||
async def test_run_multiple_shields_wrapper(get_chat_agent):
|
||||
chat_agent = await get_chat_agent
|
||||
messages = [UserMessage(content="Test message")]
|
||||
shields = ["test_shield"]
|
||||
|
||||
|
@ -254,69 +398,83 @@ async def test_run_multiple_shields_wrapper(chat_agent):
|
|||
|
||||
assert len(responses) == 2 # StepStart, StepComplete
|
||||
assert responses[0].event.payload.step_type.value == "shield_call"
|
||||
assert not responses[1].event.payload.step_details.response.is_violation
|
||||
assert not responses[1].event.payload.step_details.violation
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.skip(reason="Not yet implemented; need to mock out tool execution easily")
|
||||
async def test_chat_agent_complex_turn(chat_agent):
|
||||
# Setup
|
||||
session = chat_agent.create_session("Test Session")
|
||||
async def test_chat_agent_complex_turn(get_chat_agent):
|
||||
chat_agent = await get_chat_agent
|
||||
session_id = await chat_agent.create_session("Test Session")
|
||||
request = AgentTurnCreateRequest(
|
||||
agent_id="random",
|
||||
session_id=session.session_id,
|
||||
agent_id=chat_agent.agent_id,
|
||||
session_id=session_id,
|
||||
messages=[UserMessage(content="Tell me about AI and then use a tool.")],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# Execute the turn
|
||||
responses = []
|
||||
async for response in chat_agent.create_and_execute_turn(request):
|
||||
responses.append(response)
|
||||
|
||||
# Assertions
|
||||
assert len(responses) > 0
|
||||
|
||||
# Check for the presence of different step types
|
||||
step_types = [
|
||||
response.event.payload.step_type
|
||||
for response in responses
|
||||
if hasattr(response.event.payload, "step_type")
|
||||
]
|
||||
|
||||
assert "shield_call" in step_types, "Shield call step is missing"
|
||||
assert "inference" in step_types, "Inference step is missing"
|
||||
assert "tool_execution" in step_types, "Tool execution step is missing"
|
||||
assert StepType.shield_call in step_types, "Shield call step is missing"
|
||||
assert StepType.inference in step_types, "Inference step is missing"
|
||||
|
||||
# Check for the presence of start and complete events
|
||||
event_types = [
|
||||
response.event.payload.event_type
|
||||
for response in responses
|
||||
if hasattr(response.event.payload, "event_type")
|
||||
]
|
||||
assert "start" in event_types, "Start event is missing"
|
||||
assert "complete" in event_types, "Complete event is missing"
|
||||
assert "turn_start" in event_types, "Start event is missing"
|
||||
assert "turn_complete" in event_types, "Complete event is missing"
|
||||
|
||||
# Check for the presence of tool call
|
||||
tool_calls = [
|
||||
response.event.payload.tool_call
|
||||
for response in responses
|
||||
if hasattr(response.event.payload, "tool_call")
|
||||
]
|
||||
assert any(
|
||||
tool_call
|
||||
for tool_call in tool_calls
|
||||
if tool_call and tool_call.content.get("name") == "memory"
|
||||
), "Memory tool call is missing"
|
||||
|
||||
# Check for the final turn complete event
|
||||
assert any(
|
||||
isinstance(response.event.payload, AgentTurnResponseTurnCompletePayload)
|
||||
for response in responses
|
||||
), "Turn complete event is missing"
|
||||
turn_complete_payload = next(
|
||||
response.event.payload
|
||||
for response in responses
|
||||
if isinstance(response.event.payload, AgentTurnResponseTurnCompletePayload)
|
||||
)
|
||||
turn = turn_complete_payload.turn
|
||||
assert turn.input_messages == request.messages, "Input messages do not match"
|
||||
|
||||
# Verify the turn was added to the session
|
||||
assert len(session.turns) == 1, "Turn was not added to the session"
|
||||
assert (
|
||||
session.turns[0].input_messages == request.messages
|
||||
), "Input messages do not match"
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"toolgroups, expected_memory, expected_code_interpreter",
|
||||
[
|
||||
([], False, False), # no tools
|
||||
([MEMORY_TOOLGROUP], True, False), # memory only
|
||||
([CODE_INTERPRETER_TOOLGROUP], False, True), # code interpreter only
|
||||
([MEMORY_TOOLGROUP, CODE_INTERPRETER_TOOLGROUP], True, True), # all tools
|
||||
],
|
||||
)
|
||||
async def test_chat_agent_tools(
|
||||
get_agents_impl, toolgroups, expected_memory, expected_code_interpreter
|
||||
):
|
||||
impl = await get_agents_impl
|
||||
agent_config = AgentConfig(
|
||||
model="test_model",
|
||||
instructions="You are a helpful assistant.",
|
||||
toolgroups=toolgroups,
|
||||
tool_choice=ToolChoice.auto,
|
||||
enable_session_persistence=False,
|
||||
input_shields=["test_shield"],
|
||||
)
|
||||
response = await impl.create_agent(agent_config)
|
||||
chat_agent = await impl.get_agent(response.agent_id)
|
||||
|
||||
tool_defs, _ = await chat_agent._get_tool_defs()
|
||||
if expected_memory:
|
||||
assert MEMORY_QUERY_TOOL in tool_defs
|
||||
if expected_code_interpreter:
|
||||
assert BuiltinTool.code_interpreter in tool_defs
|
||||
|
|
|
@ -1,42 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.safety import Safety
|
||||
|
||||
from ..safety import ShieldRunnerMixin
|
||||
from .builtin import BaseTool
|
||||
|
||||
|
||||
class SafeTool(BaseTool, ShieldRunnerMixin):
|
||||
"""A tool that makes other tools safety enabled"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tool: BaseTool,
|
||||
safety_api: Safety,
|
||||
input_shields: List[str] = None,
|
||||
output_shields: List[str] = None,
|
||||
):
|
||||
self._tool = tool
|
||||
ShieldRunnerMixin.__init__(
|
||||
self, safety_api, input_shields=input_shields, output_shields=output_shields
|
||||
)
|
||||
|
||||
def get_name(self) -> str:
|
||||
return self._tool.get_name()
|
||||
|
||||
async def run(self, messages: List[Message]) -> List[Message]:
|
||||
if self.input_shields:
|
||||
await self.run_multiple_shields(messages, self.input_shields)
|
||||
# run the underlying tool
|
||||
res = await self._tool.run(messages)
|
||||
if self.output_shields:
|
||||
await self.run_multiple_shields(messages, self.output_shields)
|
||||
|
||||
return res
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Dict, List
|
||||
|
||||
import pytest
|
||||
from llama_models.llama3.api.datatypes import BuiltinTool
|
||||
|
@ -83,74 +82,6 @@ def query_attachment_messages():
|
|||
]
|
||||
|
||||
|
||||
async def create_agent_turn_with_toolgroup(
|
||||
agents_stack: Dict[str, object],
|
||||
search_query_messages: List[object],
|
||||
common_params: Dict[str, str],
|
||||
toolgroup_name: str,
|
||||
) -> None:
|
||||
"""
|
||||
Create an agent turn with a toolgroup.
|
||||
|
||||
Args:
|
||||
agents_stack (Dict[str, object]): The agents stack.
|
||||
search_query_messages (List[object]): The search query messages.
|
||||
common_params (Dict[str, str]): The common parameters.
|
||||
toolgroup_name (str): The name of the toolgroup.
|
||||
"""
|
||||
|
||||
# Create an agent with the toolgroup
|
||||
agent_config = AgentConfig(
|
||||
**{
|
||||
**common_params,
|
||||
"toolgroups": [toolgroup_name],
|
||||
}
|
||||
)
|
||||
|
||||
agent_id, session_id = await create_agent_session(
|
||||
agents_stack.impls[Api.agents], agent_config
|
||||
)
|
||||
turn_request = dict(
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
messages=search_query_messages,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
turn_response = [
|
||||
chunk
|
||||
async for chunk in await agents_stack.impls[Api.agents].create_agent_turn(
|
||||
**turn_request
|
||||
)
|
||||
]
|
||||
|
||||
assert len(turn_response) > 0
|
||||
assert all(
|
||||
isinstance(chunk, AgentTurnResponseStreamChunk) for chunk in turn_response
|
||||
)
|
||||
|
||||
check_event_types(turn_response)
|
||||
|
||||
# Check for tool execution events
|
||||
tool_execution_events = [
|
||||
chunk
|
||||
for chunk in turn_response
|
||||
if isinstance(chunk.event.payload, AgentTurnResponseStepCompletePayload)
|
||||
and chunk.event.payload.step_details.step_type == StepType.tool_execution.value
|
||||
]
|
||||
assert len(tool_execution_events) > 0, "No tool execution events found"
|
||||
|
||||
# Check the tool execution details
|
||||
tool_execution = tool_execution_events[0].event.payload.step_details
|
||||
assert isinstance(tool_execution, ToolExecutionStep)
|
||||
assert len(tool_execution.tool_calls) > 0
|
||||
actual_tool_name = tool_execution.tool_calls[0].tool_name
|
||||
assert actual_tool_name.value == tool_name
|
||||
assert len(tool_execution.tool_responses) > 0
|
||||
|
||||
check_turn_complete_event(turn_response, session_id, search_query_messages)
|
||||
|
||||
|
||||
class TestAgents:
|
||||
@pytest.mark.asyncio
|
||||
async def test_agent_turns_with_safety(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue