add unit tests for chat agent

This commit is contained in:
Dinesh Yeduguru 2025-01-08 13:57:26 -08:00
parent db2ec110a1
commit 854fef7478
4 changed files with 262 additions and 207 deletions

View file

@ -4,21 +4,25 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import tempfile
from typing import AsyncIterator, List, Optional, Union
import pytest
from llama_models.llama3.api.datatypes import BuiltinTool
from llama_stack.apis.agents import (
AgentConfig,
AgentTurnCreateRequest,
AgentTurnResponseTurnCompletePayload,
StepType,
)
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseStreamChunk,
CompletionMessage,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
@ -27,13 +31,24 @@ from llama_stack.apis.inference import (
UserMessage,
)
from llama_stack.apis.memory import MemoryBank
from llama_stack.apis.memory_banks import BankParams, VectorMemoryBank
from llama_stack.apis.safety import RunShieldResponse
from ..agents import (
AGENT_INSTANCES_BY_ID,
MetaReferenceAgentsImpl,
MetaReferenceInferenceConfig,
from llama_stack.apis.tools import (
Tool,
ToolDef,
ToolGroup,
ToolHost,
ToolInvocationResult,
ToolPromptFormat,
)
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
MEMORY_QUERY_TOOL,
)
from llama_stack.providers.inline.agents.meta_reference.agents import (
MetaReferenceAgentsImpl,
MetaReferenceAgentsImplConfig,
)
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
class MockInferenceAPI:
@ -48,10 +63,10 @@ class MockInferenceAPI:
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncIterator[
Union[ChatCompletionResponseStreamChunk, ChatCompletionResponse]
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
if stream:
async def stream_response():
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type="start",
@ -65,19 +80,7 @@ class MockInferenceAPI:
delta="AI is a fascinating field...",
)
)
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type="progress",
# delta=ToolCallDelta(
# content=ToolCall(
# call_id="123",
# tool_name=BuiltinTool.brave_search.value,
# arguments={"query": "AI history"},
# ),
# parse_status="success",
# ),
# )
# )
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type="complete",
@ -85,12 +88,17 @@ class MockInferenceAPI:
stop_reason="end_of_turn",
)
)
if stream:
return stream_response()
else:
yield ChatCompletionResponse(
return ChatCompletionResponse(
completion_message=CompletionMessage(
role="assistant", content="Mock response", stop_reason="end_of_turn"
role="assistant",
content="Mock response",
stop_reason="end_of_turn",
),
logprobs=[0.1, 0.2, 0.3] if logprobs else None,
logprobs={"token_logprobs": [0.1, 0.2, 0.3]} if logprobs else None,
)
@ -165,6 +173,99 @@ class MockMemoryAPI:
self.documents[bank_id].pop(doc_id, None)
class MockToolGroupsAPI:
async def register_tool_group(
self, toolgroup_id: str, provider_id: str, mcp_endpoint=None, args=None
) -> None:
pass
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup:
return ToolGroup(
identifier=toolgroup_id,
provider_resource_id=toolgroup_id,
)
async def list_tool_groups(self) -> List[ToolGroup]:
return []
async def list_tools(self, tool_group_id: Optional[str] = None) -> List[Tool]:
if tool_group_id == MEMORY_TOOLGROUP:
return [
Tool(
identifier=MEMORY_QUERY_TOOL,
provider_resource_id=MEMORY_QUERY_TOOL,
toolgroup_id=MEMORY_TOOLGROUP,
tool_host=ToolHost.client,
description="Mock tool",
provider_id="mock_provider",
parameters=[],
)
]
if tool_group_id == CODE_INTERPRETER_TOOLGROUP:
return [
Tool(
identifier="code_interpreter",
provider_resource_id="code_interpreter",
toolgroup_id=CODE_INTERPRETER_TOOLGROUP,
built_in_type=BuiltinTool.code_interpreter,
tool_host=ToolHost.client,
description="Mock tool",
provider_id="mock_provider",
parameters=[],
)
]
return []
async def get_tool(self, tool_name: str) -> Tool:
return Tool(
identifier=tool_name,
provider_resource_id=tool_name,
toolgroup_id="mock_group",
tool_host=ToolHost.client,
description="Mock tool",
provider_id="mock_provider",
parameters=[],
)
async def unregister_tool_group(self, tool_group_id: str) -> None:
pass
class MockToolRuntimeAPI:
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
return []
async def invoke_tool(self, tool_name: str, args: dict) -> ToolInvocationResult:
return ToolInvocationResult(content={"result": "Mock tool result"})
class MockMemoryBanksAPI:
async def list_memory_banks(self) -> List[MemoryBank]:
return []
async def get_memory_bank(self, memory_bank_id: str) -> Optional[MemoryBank]:
return None
async def register_memory_bank(
self,
memory_bank_id: str,
params: BankParams,
provider_id: Optional[str] = None,
provider_memory_bank_id: Optional[str] = None,
) -> MemoryBank:
return VectorMemoryBank(
identifier=memory_bank_id,
provider_resource_id=provider_memory_bank_id or memory_bank_id,
embedding_model="mock_model",
chunk_size_in_tokens=512,
)
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
pass
@pytest.fixture
def mock_inference_api():
return MockInferenceAPI()
@ -181,64 +282,107 @@ def mock_memory_api():
@pytest.fixture
async def chat_agent(mock_inference_api, mock_safety_api, mock_memory_api):
def mock_tool_groups_api():
return MockToolGroupsAPI()
@pytest.fixture
def mock_tool_runtime_api():
return MockToolRuntimeAPI()
@pytest.fixture
def mock_memory_banks_api():
return MockMemoryBanksAPI()
@pytest.fixture
async def get_agents_impl(
mock_inference_api,
mock_safety_api,
mock_memory_api,
mock_memory_banks_api,
mock_tool_runtime_api,
mock_tool_groups_api,
):
sqlite_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
impl = MetaReferenceAgentsImpl(
config=MetaReferenceInferenceConfig(),
config=MetaReferenceAgentsImplConfig(
persistence_store=SqliteKVStoreConfig(
db_name=sqlite_file.name,
),
),
inference_api=mock_inference_api,
safety_api=mock_safety_api,
memory_api=mock_memory_api,
memory_banks_api=mock_memory_banks_api,
tool_runtime_api=mock_tool_runtime_api,
tool_groups_api=mock_tool_groups_api,
)
await impl.initialize()
return impl
@pytest.fixture
async def get_chat_agent(get_agents_impl):
impl = await get_agents_impl
agent_config = AgentConfig(
model="test_model",
instructions="You are a helpful assistant.",
sampling_params=SamplingParams(),
tools=[
# SearchToolDefinition(
# name="brave_search",
# api_key="test_key",
# ),
],
toolgroups=[],
tool_choice=ToolChoice.auto,
enable_session_persistence=False,
input_shields=[],
output_shields=[],
input_shields=["test_shield"],
)
response = await impl.create_agent(agent_config)
agent = AGENT_INSTANCES_BY_ID[response.agent_id]
return agent
return await impl.get_agent(response.agent_id)
MEMORY_TOOLGROUP = "builtin::memory"
CODE_INTERPRETER_TOOLGROUP = "builtin::code_interpreter"
@pytest.fixture
async def get_chat_agent_with_tools(get_agents_impl, request):
impl = await get_agents_impl
toolgroups = request.param
agent_config = AgentConfig(
model="test_model",
instructions="You are a helpful assistant.",
toolgroups=toolgroups,
tool_choice=ToolChoice.auto,
enable_session_persistence=False,
input_shields=["test_shield"],
)
response = await impl.create_agent(agent_config)
return await impl.get_agent(response.agent_id)
@pytest.mark.asyncio
async def test_chat_agent_create_session(chat_agent):
session = chat_agent.create_session("Test Session")
assert session.session_name == "Test Session"
assert session.turns == []
assert session.session_id in chat_agent.sessions
@pytest.mark.asyncio
async def test_chat_agent_create_and_execute_turn(chat_agent):
session = chat_agent.create_session("Test Session")
async def test_chat_agent_create_and_execute_turn(get_chat_agent):
chat_agent = await get_chat_agent
session_id = await chat_agent.create_session("Test Session")
request = AgentTurnCreateRequest(
agent_id="random",
session_id=session.session_id,
agent_id=chat_agent.agent_id,
session_id=session_id,
messages=[UserMessage(content="Hello")],
stream=True,
)
responses = []
async for response in chat_agent.create_and_execute_turn(request):
responses.append(response)
print(responses)
assert len(responses) > 0
assert len(responses) == 4 # TurnStart, StepStart, StepComplete, TurnComplete
assert (
len(responses) == 7
) # TurnStart, ShieldCallStart, ShieldCallComplete, StepStart, StepProgress, StepComplete, TurnComplete
assert responses[0].event.payload.turn_id is not None
@pytest.mark.asyncio
async def test_run_multiple_shields_wrapper(chat_agent):
async def test_run_multiple_shields_wrapper(get_chat_agent):
chat_agent = await get_chat_agent
messages = [UserMessage(content="Test message")]
shields = ["test_shield"]
@ -254,69 +398,83 @@ async def test_run_multiple_shields_wrapper(chat_agent):
assert len(responses) == 2 # StepStart, StepComplete
assert responses[0].event.payload.step_type.value == "shield_call"
assert not responses[1].event.payload.step_details.response.is_violation
assert not responses[1].event.payload.step_details.violation
@pytest.mark.asyncio
@pytest.mark.skip(reason="Not yet implemented; need to mock out tool execution easily")
async def test_chat_agent_complex_turn(chat_agent):
# Setup
session = chat_agent.create_session("Test Session")
async def test_chat_agent_complex_turn(get_chat_agent):
chat_agent = await get_chat_agent
session_id = await chat_agent.create_session("Test Session")
request = AgentTurnCreateRequest(
agent_id="random",
session_id=session.session_id,
agent_id=chat_agent.agent_id,
session_id=session_id,
messages=[UserMessage(content="Tell me about AI and then use a tool.")],
stream=True,
)
# Execute the turn
responses = []
async for response in chat_agent.create_and_execute_turn(request):
responses.append(response)
# Assertions
assert len(responses) > 0
# Check for the presence of different step types
step_types = [
response.event.payload.step_type
for response in responses
if hasattr(response.event.payload, "step_type")
]
assert "shield_call" in step_types, "Shield call step is missing"
assert "inference" in step_types, "Inference step is missing"
assert "tool_execution" in step_types, "Tool execution step is missing"
assert StepType.shield_call in step_types, "Shield call step is missing"
assert StepType.inference in step_types, "Inference step is missing"
# Check for the presence of start and complete events
event_types = [
response.event.payload.event_type
for response in responses
if hasattr(response.event.payload, "event_type")
]
assert "start" in event_types, "Start event is missing"
assert "complete" in event_types, "Complete event is missing"
assert "turn_start" in event_types, "Start event is missing"
assert "turn_complete" in event_types, "Complete event is missing"
# Check for the presence of tool call
tool_calls = [
response.event.payload.tool_call
for response in responses
if hasattr(response.event.payload, "tool_call")
]
assert any(
tool_call
for tool_call in tool_calls
if tool_call and tool_call.content.get("name") == "memory"
), "Memory tool call is missing"
# Check for the final turn complete event
assert any(
isinstance(response.event.payload, AgentTurnResponseTurnCompletePayload)
for response in responses
), "Turn complete event is missing"
turn_complete_payload = next(
response.event.payload
for response in responses
if isinstance(response.event.payload, AgentTurnResponseTurnCompletePayload)
)
turn = turn_complete_payload.turn
assert turn.input_messages == request.messages, "Input messages do not match"
# Verify the turn was added to the session
assert len(session.turns) == 1, "Turn was not added to the session"
assert (
session.turns[0].input_messages == request.messages
), "Input messages do not match"
@pytest.mark.asyncio
@pytest.mark.parametrize(
"toolgroups, expected_memory, expected_code_interpreter",
[
([], False, False), # no tools
([MEMORY_TOOLGROUP], True, False), # memory only
([CODE_INTERPRETER_TOOLGROUP], False, True), # code interpreter only
([MEMORY_TOOLGROUP, CODE_INTERPRETER_TOOLGROUP], True, True), # all tools
],
)
async def test_chat_agent_tools(
get_agents_impl, toolgroups, expected_memory, expected_code_interpreter
):
impl = await get_agents_impl
agent_config = AgentConfig(
model="test_model",
instructions="You are a helpful assistant.",
toolgroups=toolgroups,
tool_choice=ToolChoice.auto,
enable_session_persistence=False,
input_shields=["test_shield"],
)
response = await impl.create_agent(agent_config)
chat_agent = await impl.get_agent(response.agent_id)
tool_defs, _ = await chat_agent._get_tool_defs()
if expected_memory:
assert MEMORY_QUERY_TOOL in tool_defs
if expected_code_interpreter:
assert BuiltinTool.code_interpreter in tool_defs