mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 02:11:59 +00:00
Merge branch 'main' into out-of-token-budget-fix
This commit is contained in:
commit
85ef55391d
61 changed files with 1322 additions and 1598 deletions
|
|
@ -12,8 +12,8 @@ from llama_stack.apis.common.responses import PaginatedResponse
|
|||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Dataset
|
||||
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||
from llama_stack.providers.utils.datasetio.pagination import paginate_records
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.pagination import paginate_records
|
||||
|
||||
from .config import HuggingfaceDatasetIOConfig
|
||||
|
||||
|
|
|
|||
|
|
@ -61,6 +61,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
|
|
@ -395,29 +396,25 @@ class OllamaInferenceAdapter(
|
|||
raise ValueError("Ollama does not support non-string prompts for completion")
|
||||
|
||||
model_obj = await self._get_model(model)
|
||||
params = {
|
||||
k: v
|
||||
for k, v in {
|
||||
"model": model_obj.provider_resource_id,
|
||||
"prompt": prompt,
|
||||
"best_of": best_of,
|
||||
"echo": echo,
|
||||
"frequency_penalty": frequency_penalty,
|
||||
"logit_bias": logit_bias,
|
||||
"logprobs": logprobs,
|
||||
"max_tokens": max_tokens,
|
||||
"n": n,
|
||||
"presence_penalty": presence_penalty,
|
||||
"seed": seed,
|
||||
"stop": stop,
|
||||
"stream": stream,
|
||||
"stream_options": stream_options,
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"user": user,
|
||||
}.items()
|
||||
if v is not None
|
||||
}
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return await self.openai_client.completions.create(**params) # type: ignore
|
||||
|
||||
async def openai_chat_completion(
|
||||
|
|
@ -447,35 +444,31 @@ class OllamaInferenceAdapter(
|
|||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self._get_model(model)
|
||||
params = {
|
||||
k: v
|
||||
for k, v in {
|
||||
"model": model_obj.provider_resource_id,
|
||||
"messages": messages,
|
||||
"frequency_penalty": frequency_penalty,
|
||||
"function_call": function_call,
|
||||
"functions": functions,
|
||||
"logit_bias": logit_bias,
|
||||
"logprobs": logprobs,
|
||||
"max_completion_tokens": max_completion_tokens,
|
||||
"max_tokens": max_tokens,
|
||||
"n": n,
|
||||
"parallel_tool_calls": parallel_tool_calls,
|
||||
"presence_penalty": presence_penalty,
|
||||
"response_format": response_format,
|
||||
"seed": seed,
|
||||
"stop": stop,
|
||||
"stream": stream,
|
||||
"stream_options": stream_options,
|
||||
"temperature": temperature,
|
||||
"tool_choice": tool_choice,
|
||||
"tools": tools,
|
||||
"top_logprobs": top_logprobs,
|
||||
"top_p": top_p,
|
||||
"user": user,
|
||||
}.items()
|
||||
if v is not None
|
||||
}
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return await self.openai_client.chat.completions.create(**params) # type: ignore
|
||||
|
||||
async def batch_completion(
|
||||
|
|
|
|||
|
|
@ -26,8 +26,7 @@ from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig
|
|||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
ChromaClientType = chromadb.AsyncHttpClient | chromadb.PersistentClient
|
||||
ChromaClientType = chromadb.api.AsyncClientAPI | chromadb.api.ClientAPI
|
||||
|
||||
|
||||
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue