Merge branch 'main' into enable-vector-stores-files-api-tests

This commit is contained in:
Francisco Arceo 2025-07-30 20:32:48 -04:00 committed by GitHub
commit 87780534b0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
40 changed files with 4156 additions and 846 deletions

View file

@ -12,6 +12,7 @@ from typing import Any
from numpy.typing import NDArray
from pymilvus import DataType, Function, FunctionType, MilvusClient
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files.files import Files
from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
@ -321,11 +322,11 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
return self.cache[vector_db_id]
if self.vector_db_store is None:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
index = VectorDBWithIndex(
vector_db=vector_db,
@ -348,7 +349,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
await index.insert_chunks(chunks)
@ -360,7 +361,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
if params and params.get("mode") == "keyword":
# Check if this is inline Milvus (Milvus-Lite)
@ -376,7 +377,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
"""Delete a chunk from a milvus vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise ValueError(f"Vector DB {store_id} not found")
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method

View file

@ -13,6 +13,7 @@ from psycopg2 import sql
from psycopg2.extras import Json, execute_values
from pydantic import BaseModel, TypeAdapter
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files.files import Files
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
@ -275,7 +276,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
"""Delete a chunk from a PostgreSQL vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise ValueError(f"Vector DB {store_id} not found")
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method

View file

@ -12,6 +12,7 @@ from numpy.typing import NDArray
from qdrant_client import AsyncQdrantClient, models
from qdrant_client.models import PointStruct
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
@ -173,7 +174,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
index = VectorDBWithIndex(
vector_db=vector_db,
@ -191,7 +192,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
await index.insert_chunks(chunks)
@ -203,7 +204,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise ValueError(f"Vector DB {vector_db_id} not found")
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)

View file

@ -14,6 +14,7 @@ from weaviate.classes.init import Auth
from weaviate.classes.query import Filter
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files.files import Files
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
@ -259,7 +260,7 @@ class WeaviateVectorIOAdapter(
vector_db = await self.vector_db_store.get_vector_db(sanitized_collection_name)
if not vector_db:
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
raise VectorStoreNotFoundError(vector_db_id)
client = self._get_client()
if not client.collections.exists(vector_db.identifier):
@ -282,7 +283,7 @@ class WeaviateVectorIOAdapter(
sanitized_collection_name = sanitize_collection_name(vector_db_id, weaviate_format=True)
index = await self._get_and_cache_vector_db_index(sanitized_collection_name)
if not index:
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
raise VectorStoreNotFoundError(vector_db_id)
await index.insert_chunks(chunks)
@ -295,7 +296,7 @@ class WeaviateVectorIOAdapter(
sanitized_collection_name = sanitize_collection_name(vector_db_id, weaviate_format=True)
index = await self._get_and_cache_vector_db_index(sanitized_collection_name)
if not index:
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)