mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 22:19:32 +00:00
Merge branch 'main' into feat/litellm_sambanova_usage
This commit is contained in:
commit
8783dd8162
190 changed files with 8649 additions and 3304 deletions
|
|
@ -6,14 +6,12 @@
|
|||
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import secrets
|
||||
import string
|
||||
import uuid
|
||||
from datetime import datetime, timezone
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import httpx
|
||||
|
||||
|
|
@ -60,7 +58,6 @@ from llama_stack.apis.inference import (
|
|||
)
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.tools import (
|
||||
RAGDocument,
|
||||
ToolGroups,
|
||||
ToolInvocationResult,
|
||||
ToolRuntime,
|
||||
|
|
@ -180,25 +177,29 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
return messages
|
||||
|
||||
async def create_and_execute_turn(self, request: AgentTurnCreateRequest) -> AsyncGenerator:
|
||||
await self._initialize_tools(request.toolgroups)
|
||||
async with tracing.span("create_and_execute_turn") as span:
|
||||
span = tracing.get_current_span()
|
||||
if span:
|
||||
span.set_attribute("session_id", request.session_id)
|
||||
span.set_attribute("agent_id", self.agent_id)
|
||||
span.set_attribute("request", request.model_dump_json())
|
||||
turn_id = str(uuid.uuid4())
|
||||
span.set_attribute("turn_id", turn_id)
|
||||
async for chunk in self._run_turn(request, turn_id):
|
||||
yield chunk
|
||||
|
||||
await self._initialize_tools(request.toolgroups)
|
||||
async for chunk in self._run_turn(request, turn_id):
|
||||
yield chunk
|
||||
|
||||
async def resume_turn(self, request: AgentTurnResumeRequest) -> AsyncGenerator:
|
||||
await self._initialize_tools()
|
||||
async with tracing.span("resume_turn") as span:
|
||||
span = tracing.get_current_span()
|
||||
if span:
|
||||
span.set_attribute("agent_id", self.agent_id)
|
||||
span.set_attribute("session_id", request.session_id)
|
||||
span.set_attribute("turn_id", request.turn_id)
|
||||
span.set_attribute("request", request.model_dump_json())
|
||||
async for chunk in self._run_turn(request):
|
||||
yield chunk
|
||||
span.set_attribute("turn_id", request.turn_id)
|
||||
|
||||
await self._initialize_tools()
|
||||
async for chunk in self._run_turn(request):
|
||||
yield chunk
|
||||
|
||||
async def _run_turn(
|
||||
self,
|
||||
|
|
@ -449,8 +450,16 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
stream: bool = False,
|
||||
documents: Optional[List[Document]] = None,
|
||||
) -> AsyncGenerator:
|
||||
# if document is passed in a turn, we parse the raw text of the document
|
||||
# and sent it as a user message
|
||||
if documents:
|
||||
await self.handle_documents(session_id, documents, input_messages)
|
||||
contexts = []
|
||||
for document in documents:
|
||||
raw_document_text = await get_raw_document_text(document)
|
||||
contexts.append(raw_document_text)
|
||||
|
||||
attached_context = "\n".join(contexts)
|
||||
input_messages[-1].context = attached_context
|
||||
|
||||
session_info = await self.storage.get_session_info(session_id)
|
||||
# if the session has a memory bank id, let the memory tool use it
|
||||
|
|
@ -825,7 +834,10 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
tool_name_to_args[tool_def.identifier] = toolgroup_to_args.get(toolgroup_name, {})
|
||||
|
||||
self.tool_defs, self.tool_name_to_args = list(tool_name_to_def.values()), tool_name_to_args
|
||||
self.tool_defs, self.tool_name_to_args = (
|
||||
list(tool_name_to_def.values()),
|
||||
tool_name_to_args,
|
||||
)
|
||||
|
||||
def _parse_toolgroup_name(self, toolgroup_name_with_maybe_tool_name: str) -> tuple[str, Optional[str]]:
|
||||
"""Parse a toolgroup name into its components.
|
||||
|
|
@ -876,144 +888,27 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
logger.debug(f"tool call {tool_name_str} completed with result: {result}")
|
||||
return result
|
||||
|
||||
async def handle_documents(
|
||||
self,
|
||||
session_id: str,
|
||||
documents: List[Document],
|
||||
input_messages: List[Message],
|
||||
) -> None:
|
||||
memory_tool = any(tool_def.tool_name == MEMORY_QUERY_TOOL for tool_def in self.tool_defs)
|
||||
code_interpreter_tool = any(tool_def.tool_name == BuiltinTool.code_interpreter for tool_def in self.tool_defs)
|
||||
content_items = []
|
||||
url_items = []
|
||||
pattern = re.compile("^(https?://|file://|data:)")
|
||||
for d in documents:
|
||||
if isinstance(d.content, URL):
|
||||
url_items.append(d.content)
|
||||
elif pattern.match(d.content):
|
||||
url_items.append(URL(uri=d.content))
|
||||
else:
|
||||
content_items.append(d)
|
||||
|
||||
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
|
||||
if code_interpreter_tool:
|
||||
for c in content_items:
|
||||
temp_file_path = os.path.join(self.tempdir, f"{make_random_string()}.txt")
|
||||
with open(temp_file_path, "w") as temp_file:
|
||||
temp_file.write(c.content)
|
||||
url_items.append(URL(uri=f"file://{temp_file_path}"))
|
||||
|
||||
if memory_tool and code_interpreter_tool:
|
||||
# if both memory and code_interpreter are available, we download the URLs
|
||||
# and attach the data to the last message.
|
||||
await attachment_message(self.tempdir, url_items, input_messages[-1])
|
||||
# Since memory is present, add all the data to the memory bank
|
||||
await self.add_to_session_vector_db(session_id, documents)
|
||||
elif code_interpreter_tool:
|
||||
# if only code_interpreter is available, we download the URLs to a tempdir
|
||||
# and attach the path to them as a message to inference with the
|
||||
# assumption that the model invokes the code_interpreter tool with the path
|
||||
await attachment_message(self.tempdir, url_items, input_messages[-1])
|
||||
elif memory_tool:
|
||||
# if only memory is available, we load the data from the URLs and content items to the memory bank
|
||||
await self.add_to_session_vector_db(session_id, documents)
|
||||
else:
|
||||
# if no memory or code_interpreter tool is available,
|
||||
# we try to load the data from the URLs and content items as a message to inference
|
||||
# and add it to the last message's context
|
||||
input_messages[-1].context = "\n".join(
|
||||
[doc.content for doc in content_items] + await load_data_from_urls(url_items)
|
||||
)
|
||||
|
||||
async def _ensure_vector_db(self, session_id: str) -> str:
|
||||
session_info = await self.storage.get_session_info(session_id)
|
||||
if session_info is None:
|
||||
raise ValueError(f"Session {session_id} not found")
|
||||
|
||||
if session_info.vector_db_id is None:
|
||||
vector_db_id = f"vector_db_{session_id}"
|
||||
|
||||
# TODO: the semantic for registration is definitely not "creation"
|
||||
# so we need to fix it if we expect the agent to create a new vector db
|
||||
# for each session
|
||||
await self.vector_io_api.register_vector_db(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
)
|
||||
await self.storage.add_vector_db_to_session(session_id, vector_db_id)
|
||||
else:
|
||||
vector_db_id = session_info.vector_db_id
|
||||
|
||||
return vector_db_id
|
||||
|
||||
async def add_to_session_vector_db(self, session_id: str, data: List[Document]) -> None:
|
||||
vector_db_id = await self._ensure_vector_db(session_id)
|
||||
documents = [
|
||||
RAGDocument(
|
||||
document_id=str(uuid.uuid4()),
|
||||
content=a.content,
|
||||
mime_type=a.mime_type,
|
||||
metadata={},
|
||||
)
|
||||
for a in data
|
||||
]
|
||||
await self.tool_runtime_api.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=vector_db_id,
|
||||
chunk_size_in_tokens=512,
|
||||
)
|
||||
async def load_data_from_url(url: str) -> str:
|
||||
if url.startswith("http"):
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(url)
|
||||
resp = r.text
|
||||
return resp
|
||||
raise ValueError(f"Unexpected URL: {type(url)}")
|
||||
|
||||
|
||||
async def load_data_from_urls(urls: List[URL]) -> List[str]:
|
||||
data = []
|
||||
for url in urls:
|
||||
uri = url.uri
|
||||
if uri.startswith("file://"):
|
||||
filepath = uri[len("file://") :]
|
||||
with open(filepath, "r") as f:
|
||||
data.append(f.read())
|
||||
elif uri.startswith("http"):
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(uri)
|
||||
resp = r.text
|
||||
data.append(resp)
|
||||
return data
|
||||
|
||||
|
||||
async def attachment_message(tempdir: str, urls: List[URL], message: UserMessage) -> None:
|
||||
contents = []
|
||||
|
||||
for url in urls:
|
||||
uri = url.uri
|
||||
if uri.startswith("file://"):
|
||||
filepath = uri[len("file://") :]
|
||||
elif uri.startswith("http"):
|
||||
path = urlparse(uri).path
|
||||
basename = os.path.basename(path)
|
||||
filepath = f"{tempdir}/{make_random_string() + basename}"
|
||||
logger.info(f"Downloading {url} -> {filepath}")
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(uri)
|
||||
resp = r.text
|
||||
with open(filepath, "w") as fp:
|
||||
fp.write(resp)
|
||||
else:
|
||||
raise ValueError(f"Unsupported URL {url}")
|
||||
|
||||
contents.append(
|
||||
TextContentItem(
|
||||
text=f'# User provided a file accessible to you at "{filepath}"\nYou can use code_interpreter to load and inspect it.'
|
||||
)
|
||||
)
|
||||
|
||||
if isinstance(message.content, list):
|
||||
message.content.extend(contents)
|
||||
async def get_raw_document_text(document: Document) -> str:
|
||||
if not document.mime_type.startswith("text/"):
|
||||
raise ValueError(f"Unexpected document mime type: {document.mime_type}")
|
||||
if isinstance(document.content, URL):
|
||||
return await load_data_from_url(document.content.uri)
|
||||
elif isinstance(document.content, str):
|
||||
return document.content
|
||||
elif isinstance(document.content, TextContentItem):
|
||||
return document.content.text
|
||||
else:
|
||||
if isinstance(message.content, str):
|
||||
message.content = [TextContentItem(text=message.content)] + contents
|
||||
else:
|
||||
message.content = [message.content] + contents
|
||||
raise ValueError(f"Unexpected document content type: {type(document.content)}")
|
||||
|
||||
|
||||
def _interpret_content_as_attachment(
|
||||
|
|
|
|||
|
|
@ -13,6 +13,9 @@ from typing import List, Optional
|
|||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.agents import ToolExecutionStep, Turn
|
||||
from llama_stack.distribution.access_control import check_access
|
||||
from llama_stack.distribution.datatypes import AccessAttributes
|
||||
from llama_stack.distribution.request_headers import get_auth_attributes
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
|
@ -24,6 +27,7 @@ class AgentSessionInfo(BaseModel):
|
|||
# TODO: is this used anywhere?
|
||||
vector_db_id: Optional[str] = None
|
||||
started_at: datetime
|
||||
access_attributes: Optional[AccessAttributes] = None
|
||||
|
||||
|
||||
class AgentPersistence:
|
||||
|
|
@ -33,11 +37,18 @@ class AgentPersistence:
|
|||
|
||||
async def create_session(self, name: str) -> str:
|
||||
session_id = str(uuid.uuid4())
|
||||
|
||||
# Get current user's auth attributes for new sessions
|
||||
auth_attributes = get_auth_attributes()
|
||||
access_attributes = AccessAttributes(**auth_attributes) if auth_attributes else None
|
||||
|
||||
session_info = AgentSessionInfo(
|
||||
session_id=session_id,
|
||||
session_name=name,
|
||||
started_at=datetime.now(timezone.utc),
|
||||
access_attributes=access_attributes,
|
||||
)
|
||||
|
||||
await self.kvstore.set(
|
||||
key=f"session:{self.agent_id}:{session_id}",
|
||||
value=session_info.model_dump_json(),
|
||||
|
|
@ -51,12 +62,34 @@ class AgentPersistence:
|
|||
if not value:
|
||||
return None
|
||||
|
||||
return AgentSessionInfo(**json.loads(value))
|
||||
session_info = AgentSessionInfo(**json.loads(value))
|
||||
|
||||
# Check access to session
|
||||
if not self._check_session_access(session_info):
|
||||
return None
|
||||
|
||||
return session_info
|
||||
|
||||
def _check_session_access(self, session_info: AgentSessionInfo) -> bool:
|
||||
"""Check if current user has access to the session."""
|
||||
# Handle backward compatibility for old sessions without access control
|
||||
if not hasattr(session_info, "access_attributes"):
|
||||
return True
|
||||
|
||||
return check_access(session_info.session_id, session_info.access_attributes, get_auth_attributes())
|
||||
|
||||
async def get_session_if_accessible(self, session_id: str) -> Optional[AgentSessionInfo]:
|
||||
"""Get session info if the user has access to it. For internal use by sub-session methods."""
|
||||
session_info = await self.get_session_info(session_id)
|
||||
if not session_info:
|
||||
return None
|
||||
|
||||
return session_info
|
||||
|
||||
async def add_vector_db_to_session(self, session_id: str, vector_db_id: str):
|
||||
session_info = await self.get_session_info(session_id)
|
||||
session_info = await self.get_session_if_accessible(session_id)
|
||||
if session_info is None:
|
||||
raise ValueError(f"Session {session_id} not found")
|
||||
raise ValueError(f"Session {session_id} not found or access denied")
|
||||
|
||||
session_info.vector_db_id = vector_db_id
|
||||
await self.kvstore.set(
|
||||
|
|
@ -65,12 +98,18 @@ class AgentPersistence:
|
|||
)
|
||||
|
||||
async def add_turn_to_session(self, session_id: str, turn: Turn):
|
||||
if not await self.get_session_if_accessible(session_id):
|
||||
raise ValueError(f"Session {session_id} not found or access denied")
|
||||
|
||||
await self.kvstore.set(
|
||||
key=f"session:{self.agent_id}:{session_id}:{turn.turn_id}",
|
||||
value=turn.model_dump_json(),
|
||||
)
|
||||
|
||||
async def get_session_turns(self, session_id: str) -> List[Turn]:
|
||||
if not await self.get_session_if_accessible(session_id):
|
||||
raise ValueError(f"Session {session_id} not found or access denied")
|
||||
|
||||
values = await self.kvstore.range(
|
||||
start_key=f"session:{self.agent_id}:{session_id}:",
|
||||
end_key=f"session:{self.agent_id}:{session_id}:\xff\xff\xff\xff",
|
||||
|
|
@ -87,6 +126,9 @@ class AgentPersistence:
|
|||
return turns
|
||||
|
||||
async def get_session_turn(self, session_id: str, turn_id: str) -> Optional[Turn]:
|
||||
if not await self.get_session_if_accessible(session_id):
|
||||
raise ValueError(f"Session {session_id} not found or access denied")
|
||||
|
||||
value = await self.kvstore.get(
|
||||
key=f"session:{self.agent_id}:{session_id}:{turn_id}",
|
||||
)
|
||||
|
|
@ -95,24 +137,36 @@ class AgentPersistence:
|
|||
return Turn(**json.loads(value))
|
||||
|
||||
async def set_in_progress_tool_call_step(self, session_id: str, turn_id: str, step: ToolExecutionStep):
|
||||
if not await self.get_session_if_accessible(session_id):
|
||||
raise ValueError(f"Session {session_id} not found or access denied")
|
||||
|
||||
await self.kvstore.set(
|
||||
key=f"in_progress_tool_call_step:{self.agent_id}:{session_id}:{turn_id}",
|
||||
value=step.model_dump_json(),
|
||||
)
|
||||
|
||||
async def get_in_progress_tool_call_step(self, session_id: str, turn_id: str) -> Optional[ToolExecutionStep]:
|
||||
if not await self.get_session_if_accessible(session_id):
|
||||
return None
|
||||
|
||||
value = await self.kvstore.get(
|
||||
key=f"in_progress_tool_call_step:{self.agent_id}:{session_id}:{turn_id}",
|
||||
)
|
||||
return ToolExecutionStep(**json.loads(value)) if value else None
|
||||
|
||||
async def set_num_infer_iters_in_turn(self, session_id: str, turn_id: str, num_infer_iters: int):
|
||||
if not await self.get_session_if_accessible(session_id):
|
||||
raise ValueError(f"Session {session_id} not found or access denied")
|
||||
|
||||
await self.kvstore.set(
|
||||
key=f"num_infer_iters_in_turn:{self.agent_id}:{session_id}:{turn_id}",
|
||||
value=str(num_infer_iters),
|
||||
)
|
||||
|
||||
async def get_num_infer_iters_in_turn(self, session_id: str, turn_id: str) -> Optional[int]:
|
||||
if not await self.get_session_if_accessible(session_id):
|
||||
return None
|
||||
|
||||
value = await self.kvstore.get(
|
||||
key=f"num_infer_iters_in_turn:{self.agent_id}:{session_id}:{turn_id}",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
|
|
@ -21,8 +21,8 @@ from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
|
|||
from llama_stack.providers.utils.common.data_schema_validator import ColumnName
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
|
||||
from .....apis.common.job_types import Job
|
||||
from .....apis.eval.eval import BenchmarkConfig, Eval, EvaluateResponse, JobStatus
|
||||
from .....apis.common.job_types import Job, JobStatus
|
||||
from .....apis.eval.eval import BenchmarkConfig, Eval, EvaluateResponse
|
||||
from .config import MetaReferenceEvalConfig
|
||||
|
||||
EVAL_TASKS_PREFIX = "benchmarks:"
|
||||
|
|
@ -102,7 +102,7 @@ class MetaReferenceEvalImpl(
|
|||
# need job scheduler queue (ray/celery) w/ jobs api
|
||||
job_id = str(len(self.jobs))
|
||||
self.jobs[job_id] = res
|
||||
return Job(job_id=job_id)
|
||||
return Job(job_id=job_id, status=JobStatus.completed)
|
||||
|
||||
async def _run_agent_generation(
|
||||
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
|
||||
|
|
@ -216,17 +216,18 @@ class MetaReferenceEvalImpl(
|
|||
|
||||
return EvaluateResponse(generations=generations, scores=score_response.results)
|
||||
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> Optional[JobStatus]:
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
|
||||
if job_id in self.jobs:
|
||||
return JobStatus.completed
|
||||
return Job(job_id=job_id, status=JobStatus.completed)
|
||||
|
||||
return None
|
||||
raise ValueError(f"Job {job_id} not found")
|
||||
|
||||
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
|
||||
raise NotImplementedError("Job cancel is not implemented yet")
|
||||
|
||||
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
|
||||
status = await self.job_status(benchmark_id, job_id)
|
||||
job = await self.job_status(benchmark_id, job_id)
|
||||
status = job.status
|
||||
if not status or status != JobStatus.completed:
|
||||
raise ValueError(f"Job is not completed, Status: {status.value}")
|
||||
|
||||
|
|
|
|||
|
|
@ -23,7 +23,9 @@ from llama_stack.providers.utils.common.data_schema_validator import (
|
|||
|
||||
from .config import BasicScoringConfig
|
||||
from .scoring_fn.bfcl_scoring_fn import BFCLScoringFn
|
||||
from .scoring_fn.docvqa_scoring_fn import DocVQAScoringFn
|
||||
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
|
||||
from .scoring_fn.ifeval_scoring_fn import IfEvalScoringFn
|
||||
from .scoring_fn.regex_parser_math_response_scoring_fn import (
|
||||
RegexParserMathResponseScoringFn,
|
||||
)
|
||||
|
|
@ -36,6 +38,8 @@ FIXED_FNS = [
|
|||
RegexParserScoringFn,
|
||||
RegexParserMathResponseScoringFn,
|
||||
BFCLScoringFn,
|
||||
IfEvalScoringFn,
|
||||
DocVQAScoringFn,
|
||||
]
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,240 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from .fn_defs.docvqa import docvqa
|
||||
|
||||
CONTRACTIONS = {
|
||||
"aint": "ain't",
|
||||
"arent": "aren't",
|
||||
"cant": "can't",
|
||||
"couldve": "could've",
|
||||
"couldnt": "couldn't",
|
||||
"couldn'tve": "couldn't've",
|
||||
"couldnt've": "couldn't've",
|
||||
"didnt": "didn't",
|
||||
"doesnt": "doesn't",
|
||||
"dont": "don't",
|
||||
"hadnt": "hadn't",
|
||||
"hadnt've": "hadn't've",
|
||||
"hadn'tve": "hadn't've",
|
||||
"hasnt": "hasn't",
|
||||
"havent": "haven't",
|
||||
"hed": "he'd",
|
||||
"hed've": "he'd've",
|
||||
"he'dve": "he'd've",
|
||||
"hes": "he's",
|
||||
"howd": "how'd",
|
||||
"howll": "how'll",
|
||||
"hows": "how's",
|
||||
"Id've": "I'd've",
|
||||
"I'dve": "I'd've",
|
||||
"Im": "I'm",
|
||||
"Ive": "I've",
|
||||
"isnt": "isn't",
|
||||
"itd": "it'd",
|
||||
"itd've": "it'd've",
|
||||
"it'dve": "it'd've",
|
||||
"itll": "it'll",
|
||||
"let's": "let's",
|
||||
"maam": "ma'am",
|
||||
"mightnt": "mightn't",
|
||||
"mightnt've": "mightn't've",
|
||||
"mightn'tve": "mightn't've",
|
||||
"mightve": "might've",
|
||||
"mustnt": "mustn't",
|
||||
"mustve": "must've",
|
||||
"neednt": "needn't",
|
||||
"notve": "not've",
|
||||
"oclock": "o'clock",
|
||||
"oughtnt": "oughtn't",
|
||||
"ow's'at": "'ow's'at",
|
||||
"'ows'at": "'ow's'at",
|
||||
"'ow'sat": "'ow's'at",
|
||||
"shant": "shan't",
|
||||
"shed've": "she'd've",
|
||||
"she'dve": "she'd've",
|
||||
"she's": "she's",
|
||||
"shouldve": "should've",
|
||||
"shouldnt": "shouldn't",
|
||||
"shouldnt've": "shouldn't've",
|
||||
"shouldn'tve": "shouldn't've",
|
||||
"somebody'd": "somebodyd",
|
||||
"somebodyd've": "somebody'd've",
|
||||
"somebody'dve": "somebody'd've",
|
||||
"somebodyll": "somebody'll",
|
||||
"somebodys": "somebody's",
|
||||
"someoned": "someone'd",
|
||||
"someoned've": "someone'd've",
|
||||
"someone'dve": "someone'd've",
|
||||
"someonell": "someone'll",
|
||||
"someones": "someone's",
|
||||
"somethingd": "something'd",
|
||||
"somethingd've": "something'd've",
|
||||
"something'dve": "something'd've",
|
||||
"somethingll": "something'll",
|
||||
"thats": "that's",
|
||||
"thered": "there'd",
|
||||
"thered've": "there'd've",
|
||||
"there'dve": "there'd've",
|
||||
"therere": "there're",
|
||||
"theres": "there's",
|
||||
"theyd": "they'd",
|
||||
"theyd've": "they'd've",
|
||||
"they'dve": "they'd've",
|
||||
"theyll": "they'll",
|
||||
"theyre": "they're",
|
||||
"theyve": "they've",
|
||||
"twas": "'twas",
|
||||
"wasnt": "wasn't",
|
||||
"wed've": "we'd've",
|
||||
"we'dve": "we'd've",
|
||||
"weve": "we've",
|
||||
"werent": "weren't",
|
||||
"whatll": "what'll",
|
||||
"whatre": "what're",
|
||||
"whats": "what's",
|
||||
"whatve": "what've",
|
||||
"whens": "when's",
|
||||
"whered": "where'd",
|
||||
"wheres": "where's",
|
||||
"whereve": "where've",
|
||||
"whod": "who'd",
|
||||
"whod've": "who'd've",
|
||||
"who'dve": "who'd've",
|
||||
"wholl": "who'll",
|
||||
"whos": "who's",
|
||||
"whove": "who've",
|
||||
"whyll": "why'll",
|
||||
"whyre": "why're",
|
||||
"whys": "why's",
|
||||
"wont": "won't",
|
||||
"wouldve": "would've",
|
||||
"wouldnt": "wouldn't",
|
||||
"wouldnt've": "wouldn't've",
|
||||
"wouldn'tve": "wouldn't've",
|
||||
"yall": "y'all",
|
||||
"yall'll": "y'all'll",
|
||||
"y'allll": "y'all'll",
|
||||
"yall'd've": "y'all'd've",
|
||||
"y'alld've": "y'all'd've",
|
||||
"y'all'dve": "y'all'd've",
|
||||
"youd": "you'd",
|
||||
"youd've": "you'd've",
|
||||
"you'dve": "you'd've",
|
||||
"youll": "you'll",
|
||||
"youre": "you're",
|
||||
"youve": "you've",
|
||||
"1st": "first",
|
||||
"2nd": "second",
|
||||
"3rd": "third",
|
||||
}
|
||||
NUMBERS = {
|
||||
"none": "0",
|
||||
"zero": "0",
|
||||
"one": "1",
|
||||
"two": "2",
|
||||
"three": "3",
|
||||
"four": "4",
|
||||
"five": "5",
|
||||
"six": "6",
|
||||
"seven": "7",
|
||||
"eight": "8",
|
||||
"nine": "9",
|
||||
"ten": "10",
|
||||
}
|
||||
ARTICLES = [
|
||||
"a",
|
||||
"an",
|
||||
"the",
|
||||
"to",
|
||||
"in",
|
||||
"from",
|
||||
"by",
|
||||
] # Contains a bit more than just articles, but we want to get rid of these elements influencing the accuracy
|
||||
PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)")
|
||||
COMMA_STRIP = re.compile(r"(\d)(\,)(\d)")
|
||||
PUNCTUATION = [
|
||||
";",
|
||||
r"/",
|
||||
"[",
|
||||
"]",
|
||||
'"',
|
||||
"{",
|
||||
"}",
|
||||
"(",
|
||||
")",
|
||||
"=",
|
||||
"+",
|
||||
"\\",
|
||||
"_",
|
||||
"-",
|
||||
">",
|
||||
"<",
|
||||
"@",
|
||||
"`",
|
||||
",",
|
||||
"?",
|
||||
"!",
|
||||
]
|
||||
|
||||
|
||||
def normalize_answer(s: str) -> str:
|
||||
# process punctuation
|
||||
for p in PUNCTUATION:
|
||||
if (p + " " in s or " " + p in s) or (re.search(COMMA_STRIP, s) is not None):
|
||||
s = s.replace(p, "")
|
||||
else:
|
||||
s = s.replace(p, " ")
|
||||
s = PERIOD_STRIP.sub("", s, re.UNICODE)
|
||||
|
||||
# process digits and articles
|
||||
temp_text = s.lower().split()
|
||||
out_text = []
|
||||
for word in temp_text:
|
||||
word = NUMBERS.setdefault(word, word)
|
||||
if word not in ARTICLES:
|
||||
out_text.append(word)
|
||||
|
||||
# standardize contractions
|
||||
for word_id, word in enumerate(out_text):
|
||||
if word in CONTRACTIONS:
|
||||
out_text[word_id] = CONTRACTIONS[word]
|
||||
return " ".join(out_text)
|
||||
|
||||
|
||||
class DocVQAScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
docvqa basically matches the generated answer against several allowed
|
||||
choices, but we need to normalize the answer to avoid penalizing
|
||||
trivial differences
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
docvqa.identifier: docvqa,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = "docvqa",
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
expected_answers = json.loads(input_row["expected_answer"])
|
||||
generated_answer = input_row["generated_answer"]
|
||||
score = 1.0 if normalize_answer(generated_answer) in [normalize_answer(s) for s in expected_answers] else 0.0
|
||||
return {
|
||||
"score": score,
|
||||
}
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
docvqa = ScoringFn(
|
||||
identifier="basic::docvqa",
|
||||
description="DocVQA Visual Question & Answer scoring function",
|
||||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="docvqa",
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
ifeval = ScoringFn(
|
||||
identifier="basic::ifeval",
|
||||
description="Eval intruction follow capacity by checkping how many instructions can be followed in each example",
|
||||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="ifeval",
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.weighted_average],
|
||||
),
|
||||
)
|
||||
|
|
@ -0,0 +1,80 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
||||
from .fn_defs.ifeval import (
|
||||
ifeval,
|
||||
)
|
||||
|
||||
|
||||
class IfEvalScoringFn(RegisteredBaseScoringFn):
|
||||
"""
|
||||
A scoring_fn Instruction-Following Eval (IFEval) benchmark
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
ifeval.identifier: ifeval,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
from ..utils.ifeval_utils import INSTRUCTION_DICT, INSTRUCTION_LIST
|
||||
|
||||
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
if scoring_params is not None:
|
||||
fn_def.params = scoring_params
|
||||
|
||||
instruction_list = input_row["instruction_id_list"]
|
||||
generated_answer = input_row["generated_answer"].strip()
|
||||
|
||||
is_following_list = []
|
||||
results = dict(
|
||||
{k + "_correct": 0.0 for k in INSTRUCTION_LIST},
|
||||
**{k + "_total": 0.0 for k in INSTRUCTION_LIST},
|
||||
)
|
||||
|
||||
for index, instruction_id in enumerate(instruction_list):
|
||||
instruction_cls = INSTRUCTION_DICT[instruction_id]
|
||||
instruction = instruction_cls(instruction_id)
|
||||
results[instruction_id + "_total"] += 1.0
|
||||
results[instruction_id.split(":")[0] + "_total"] += 1.0
|
||||
|
||||
clean_input_row = {k: v for k, v in input_row["kwargs"][index].items() if v is not None}
|
||||
print(clean_input_row)
|
||||
instruction.build_description(**clean_input_row)
|
||||
args = instruction.get_instruction_args()
|
||||
if args and "prompt" in args:
|
||||
instruction.build_description(prompt=input_row["prompt"])
|
||||
|
||||
if generated_answer and instruction.check_following(generated_answer):
|
||||
is_following_list.append(True)
|
||||
results[instruction_id + "_correct"] += 1.0
|
||||
results[instruction_id.split(":")[0] + "_correct"] += 1.0
|
||||
else:
|
||||
is_following_list.append(False)
|
||||
|
||||
if len(is_following_list) == 0:
|
||||
return {
|
||||
"score": 0.0,
|
||||
"weight": 0.0,
|
||||
}
|
||||
|
||||
return {
|
||||
"score": float(sum(is_following_list)) / float(len(is_following_list)),
|
||||
"weight": float(len(is_following_list)),
|
||||
}
|
||||
3319
llama_stack/providers/inline/scoring/basic/utils/ifeval_utils.py
Normal file
3319
llama_stack/providers/inline/scoring/basic/utils/ifeval_utils.py
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -6,12 +6,14 @@
|
|||
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import TelemetryConfig, TelemetrySink
|
||||
|
||||
__all__ = ["TelemetryConfig", "TelemetrySink"]
|
||||
|
||||
|
||||
async def get_provider_impl(config: TelemetryConfig, deps: Dict[str, Any]):
|
||||
async def get_provider_impl(config: TelemetryConfig, deps: Dict[Api, Any]):
|
||||
from .telemetry import TelemetryAdapter
|
||||
|
||||
impl = TelemetryAdapter(config, deps)
|
||||
|
|
|
|||
|
|
@ -13,19 +13,20 @@ from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
|
|||
|
||||
|
||||
class TelemetrySink(str, Enum):
|
||||
OTEL = "otel"
|
||||
OTEL_TRACE = "otel_trace"
|
||||
OTEL_METRIC = "otel_metric"
|
||||
SQLITE = "sqlite"
|
||||
CONSOLE = "console"
|
||||
|
||||
|
||||
class TelemetryConfig(BaseModel):
|
||||
otel_endpoint: str = Field(
|
||||
otel_trace_endpoint: str = Field(
|
||||
default="http://localhost:4318/v1/traces",
|
||||
description="The OpenTelemetry collector endpoint URL",
|
||||
description="The OpenTelemetry collector endpoint URL for traces",
|
||||
)
|
||||
service_name: str = Field(
|
||||
default="llama-stack",
|
||||
description="The service name to use for telemetry",
|
||||
otel_metric_endpoint: str = Field(
|
||||
default="http://localhost:4318/v1/metrics",
|
||||
description="The OpenTelemetry collector endpoint URL for metrics",
|
||||
)
|
||||
sinks: List[TelemetrySink] = Field(
|
||||
default=[TelemetrySink.CONSOLE, TelemetrySink.SQLITE],
|
||||
|
|
@ -46,7 +47,6 @@ class TelemetryConfig(BaseModel):
|
|||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, db_name: str = "trace_store.db") -> Dict[str, Any]:
|
||||
return {
|
||||
"service_name": "${env.OTEL_SERVICE_NAME:llama-stack}",
|
||||
"sinks": "${env.TELEMETRY_SINKS:console,sqlite}",
|
||||
"sqlite_db_path": "${env.SQLITE_DB_PATH:" + __distro_dir__ + "/" + db_name + "}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -101,6 +101,6 @@ class ConsoleSpanProcessor(SpanProcessor):
|
|||
"""Shutdown the processor."""
|
||||
pass
|
||||
|
||||
def force_flush(self, timeout_millis: float = None) -> bool:
|
||||
def force_flush(self, timeout_millis: float | None = None) -> bool:
|
||||
"""Force flush any pending spans."""
|
||||
return True
|
||||
|
|
|
|||
|
|
@ -12,6 +12,7 @@ from datetime import datetime, timezone
|
|||
|
||||
from opentelemetry.sdk.trace import SpanProcessor
|
||||
from opentelemetry.trace import Span
|
||||
from opentelemetry.trace.span import format_span_id, format_trace_id
|
||||
|
||||
|
||||
class SQLiteSpanProcessor(SpanProcessor):
|
||||
|
|
@ -100,14 +101,14 @@ class SQLiteSpanProcessor(SpanProcessor):
|
|||
conn = self._get_connection()
|
||||
cursor = conn.cursor()
|
||||
|
||||
trace_id = format(span.get_span_context().trace_id, "032x")
|
||||
span_id = format(span.get_span_context().span_id, "016x")
|
||||
trace_id = format_trace_id(span.get_span_context().trace_id)
|
||||
span_id = format_span_id(span.get_span_context().span_id)
|
||||
service_name = span.resource.attributes.get("service.name", "unknown")
|
||||
|
||||
parent_span_id = None
|
||||
parent_context = span.parent
|
||||
if parent_context:
|
||||
parent_span_id = format(parent_context.span_id, "016x")
|
||||
parent_span_id = format_span_id(parent_context.span_id)
|
||||
|
||||
# Insert into traces
|
||||
cursor.execute(
|
||||
|
|
@ -123,7 +124,7 @@ class SQLiteSpanProcessor(SpanProcessor):
|
|||
(
|
||||
trace_id,
|
||||
service_name,
|
||||
(span_id if not parent_span_id else None),
|
||||
(span_id if span.attributes.get("__root_span__") == "true" else None),
|
||||
datetime.fromtimestamp(span.start_time / 1e9, timezone.utc).isoformat(),
|
||||
datetime.fromtimestamp(span.end_time / 1e9, timezone.utc).isoformat(),
|
||||
),
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ from llama_stack.providers.utils.telemetry.sqlite_trace_store import SQLiteTrace
|
|||
|
||||
from .config import TelemetryConfig, TelemetrySink
|
||||
|
||||
_GLOBAL_STORAGE = {
|
||||
_GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
|
||||
"active_spans": {},
|
||||
"counters": {},
|
||||
"gauges": {},
|
||||
|
|
@ -54,30 +54,21 @@ _global_lock = threading.Lock()
|
|||
_TRACER_PROVIDER = None
|
||||
|
||||
|
||||
def string_to_trace_id(s: str) -> int:
|
||||
# Convert the string to bytes and then to an integer
|
||||
return int.from_bytes(s.encode(), byteorder="big", signed=False)
|
||||
|
||||
|
||||
def string_to_span_id(s: str) -> int:
|
||||
# Use only the first 8 bytes (64 bits) for span ID
|
||||
return int.from_bytes(s.encode()[:8], byteorder="big", signed=False)
|
||||
|
||||
|
||||
def is_tracing_enabled(tracer):
|
||||
with tracer.start_as_current_span("check_tracing") as span:
|
||||
return span.is_recording()
|
||||
|
||||
|
||||
class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
||||
def __init__(self, config: TelemetryConfig, deps: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: TelemetryConfig, deps: Dict[Api, Any]) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = deps.get(Api.datasetio)
|
||||
self.meter = None
|
||||
|
||||
resource = Resource.create(
|
||||
{
|
||||
ResourceAttributes.SERVICE_NAME: self.config.service_name,
|
||||
# service name is always the same, use zero-width space to avoid clutter
|
||||
ResourceAttributes.SERVICE_NAME: "",
|
||||
}
|
||||
)
|
||||
|
||||
|
|
@ -91,15 +82,16 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
provider = TracerProvider(resource=resource)
|
||||
trace.set_tracer_provider(provider)
|
||||
_TRACER_PROVIDER = provider
|
||||
if TelemetrySink.OTEL in self.config.sinks:
|
||||
otlp_exporter = OTLPSpanExporter(
|
||||
endpoint=self.config.otel_endpoint,
|
||||
if TelemetrySink.OTEL_TRACE in self.config.sinks:
|
||||
span_exporter = OTLPSpanExporter(
|
||||
endpoint=self.config.otel_trace_endpoint,
|
||||
)
|
||||
span_processor = BatchSpanProcessor(otlp_exporter)
|
||||
span_processor = BatchSpanProcessor(span_exporter)
|
||||
trace.get_tracer_provider().add_span_processor(span_processor)
|
||||
if TelemetrySink.OTEL_METRIC in self.config.sinks:
|
||||
metric_reader = PeriodicExportingMetricReader(
|
||||
OTLPMetricExporter(
|
||||
endpoint=self.config.otel_endpoint,
|
||||
endpoint=self.config.otel_metric_endpoint,
|
||||
)
|
||||
)
|
||||
metric_provider = MeterProvider(resource=resource, metric_readers=[metric_reader])
|
||||
|
|
@ -109,7 +101,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
if TelemetrySink.CONSOLE in self.config.sinks:
|
||||
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor())
|
||||
|
||||
if TelemetrySink.OTEL in self.config.sinks:
|
||||
if TelemetrySink.OTEL_METRIC in self.config.sinks:
|
||||
self.meter = metrics.get_meter(__name__)
|
||||
if TelemetrySink.SQLITE in self.config.sinks:
|
||||
self.trace_store = SQLiteTraceStore(self.config.sqlite_db_path)
|
||||
|
|
@ -135,7 +127,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
def _log_unstructured(self, event: UnstructuredLogEvent, ttl_seconds: int) -> None:
|
||||
with self._lock:
|
||||
# Use global storage instead of instance storage
|
||||
span_id = string_to_span_id(event.span_id)
|
||||
span_id = event.span_id
|
||||
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
|
||||
|
||||
if span:
|
||||
|
|
@ -146,7 +138,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
"message": event.message,
|
||||
"severity": event.severity.value,
|
||||
"__ttl__": ttl_seconds,
|
||||
**event.attributes,
|
||||
**(event.attributes or {}),
|
||||
},
|
||||
timestamp=timestamp_ns,
|
||||
)
|
||||
|
|
@ -154,6 +146,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
print(f"Warning: No active span found for span_id {span_id}. Dropping event: {event}")
|
||||
|
||||
def _get_or_create_counter(self, name: str, unit: str) -> metrics.Counter:
|
||||
assert self.meter is not None
|
||||
if name not in _GLOBAL_STORAGE["counters"]:
|
||||
_GLOBAL_STORAGE["counters"][name] = self.meter.create_counter(
|
||||
name=name,
|
||||
|
|
@ -163,6 +156,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
return _GLOBAL_STORAGE["counters"][name]
|
||||
|
||||
def _get_or_create_gauge(self, name: str, unit: str) -> metrics.ObservableGauge:
|
||||
assert self.meter is not None
|
||||
if name not in _GLOBAL_STORAGE["gauges"]:
|
||||
_GLOBAL_STORAGE["gauges"][name] = self.meter.create_gauge(
|
||||
name=name,
|
||||
|
|
@ -182,6 +176,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
up_down_counter.add(event.value, attributes=event.attributes)
|
||||
|
||||
def _get_or_create_up_down_counter(self, name: str, unit: str) -> metrics.UpDownCounter:
|
||||
assert self.meter is not None
|
||||
if name not in _GLOBAL_STORAGE["up_down_counters"]:
|
||||
_GLOBAL_STORAGE["up_down_counters"][name] = self.meter.create_up_down_counter(
|
||||
name=name,
|
||||
|
|
@ -192,8 +187,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
|
||||
def _log_structured(self, event: StructuredLogEvent, ttl_seconds: int) -> None:
|
||||
with self._lock:
|
||||
span_id = string_to_span_id(event.span_id)
|
||||
trace_id = string_to_trace_id(event.trace_id)
|
||||
span_id = int(event.span_id, 16)
|
||||
tracer = trace.get_tracer(__name__)
|
||||
if event.attributes is None:
|
||||
event.attributes = {}
|
||||
|
|
@ -204,14 +198,23 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
if span_id in _GLOBAL_STORAGE["active_spans"]:
|
||||
return
|
||||
|
||||
parent_span = None
|
||||
context = None
|
||||
if event.payload.parent_span_id:
|
||||
parent_span_id = string_to_span_id(event.payload.parent_span_id)
|
||||
parent_span_id = int(event.payload.parent_span_id, 16)
|
||||
parent_span = _GLOBAL_STORAGE["active_spans"].get(parent_span_id)
|
||||
|
||||
context = trace.Context(trace_id=trace_id)
|
||||
if parent_span:
|
||||
context = trace.set_span_in_context(parent_span, context)
|
||||
context = trace.set_span_in_context(parent_span)
|
||||
else:
|
||||
context = trace.set_span_in_context(
|
||||
trace.NonRecordingSpan(
|
||||
trace.SpanContext(
|
||||
trace_id=int(event.trace_id, 16),
|
||||
span_id=span_id,
|
||||
is_remote=False,
|
||||
trace_flags=trace.TraceFlags(trace.TraceFlags.SAMPLED),
|
||||
)
|
||||
)
|
||||
)
|
||||
event.attributes["__root_span__"] = "true"
|
||||
|
||||
span = tracer.start_span(
|
||||
name=event.payload.name,
|
||||
|
|
|
|||
|
|
@ -69,7 +69,7 @@ def popen_not_allowed(*args, **kwargs):
|
|||
)
|
||||
|
||||
|
||||
_subprocess.Popen = popen_not_allowed
|
||||
_subprocess.Popen = popen_not_allowed # type: ignore
|
||||
|
||||
|
||||
import atexit as _atexit
|
||||
|
|
@ -104,7 +104,7 @@ def _open_connections():
|
|||
return _NETWORK_CONNECTIONS
|
||||
|
||||
|
||||
_builtins._open_connections = _open_connections
|
||||
_builtins._open_connections = _open_connections # type: ignore
|
||||
|
||||
|
||||
@_atexit.register
|
||||
|
|
|
|||
|
|
@ -161,9 +161,9 @@ _set_seeds()\
|
|||
def process_matplotlib_response(response, matplotlib_dump_dir: str):
|
||||
image_data = response["image_data"]
|
||||
# Convert the base64 string to a bytes object
|
||||
images = [base64.b64decode(d["image_base64"]) for d in image_data]
|
||||
images_raw = [base64.b64decode(d["image_base64"]) for d in image_data]
|
||||
# Create a list of PIL images from the bytes objects
|
||||
images = [Image.open(BytesIO(img)) for img in images]
|
||||
images = [Image.open(BytesIO(img)) for img in images_raw]
|
||||
# Create a list of image paths
|
||||
image_paths = []
|
||||
for i, img in enumerate(images):
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ from llama_stack.providers.datatypes import Api
|
|||
from .config import RagToolRuntimeConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: RagToolRuntimeConfig, deps: Dict[str, Any]):
|
||||
async def get_provider_impl(config: RagToolRuntimeConfig, deps: Dict[Api, Any]):
|
||||
from .memory import MemoryToolRuntimeImpl
|
||||
|
||||
impl = MemoryToolRuntimeImpl(config, deps[Api.vector_io], deps[Api.inference])
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ from pydantic import TypeAdapter
|
|||
from llama_stack.apis.common.content_types import (
|
||||
URL,
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
|
@ -23,6 +24,7 @@ from llama_stack.apis.tools import (
|
|||
RAGQueryConfig,
|
||||
RAGQueryResult,
|
||||
RAGToolRuntime,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
|
|
@ -62,6 +64,12 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
async def shutdown(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
return
|
||||
|
||||
async def insert(
|
||||
self,
|
||||
documents: List[RAGDocument],
|
||||
|
|
@ -121,11 +129,11 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
return RAGQueryResult(content=None)
|
||||
|
||||
# sort by score
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False)
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False) # type: ignore
|
||||
chunks = chunks[: query_config.max_chunks]
|
||||
|
||||
tokens = 0
|
||||
picked = [
|
||||
picked: list[InterleavedContentItem] = [
|
||||
TextContentItem(
|
||||
text=f"knowledge_search tool found {len(chunks)} chunks:\nBEGIN of knowledge_search tool results.\n"
|
||||
)
|
||||
|
|
|
|||
|
|
@ -15,11 +15,13 @@ import faiss
|
|||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
|
|
@ -35,16 +37,14 @@ FAISS_INDEX_PREFIX = f"faiss_index:{VERSION}::"
|
|||
|
||||
|
||||
class FaissIndex(EmbeddingIndex):
|
||||
chunk_by_index: Dict[int, str]
|
||||
|
||||
def __init__(self, dimension: int, kvstore=None, bank_id: str = None):
|
||||
def __init__(self, dimension: int, kvstore: KVStore | None = None, bank_id: str | None = None):
|
||||
self.index = faiss.IndexFlatL2(dimension)
|
||||
self.chunk_by_index = {}
|
||||
self.chunk_by_index: dict[int, Chunk] = {}
|
||||
self.kvstore = kvstore
|
||||
self.bank_id = bank_id
|
||||
|
||||
@classmethod
|
||||
async def create(cls, dimension: int, kvstore=None, bank_id: str = None):
|
||||
async def create(cls, dimension: int, kvstore: KVStore | None = None, bank_id: str | None = None):
|
||||
instance = cls(dimension, kvstore, bank_id)
|
||||
await instance.initialize()
|
||||
return instance
|
||||
|
|
@ -114,11 +114,11 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: FaissVectorIOConfig, inference_api: Api.inference) -> None:
|
||||
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.cache = {}
|
||||
self.kvstore = None
|
||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
|
@ -144,6 +144,8 @@ class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self,
|
||||
vector_db: VectorDB,
|
||||
) -> None:
|
||||
assert self.kvstore is not None
|
||||
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}"
|
||||
await self.kvstore.set(
|
||||
key=key,
|
||||
|
|
@ -161,6 +163,8 @@ class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
return [i.vector_db for i in self.cache.values()]
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
assert self.kvstore is not None
|
||||
|
||||
if vector_db_id not in self.cache:
|
||||
logger.warning(f"Vector DB {vector_db_id} not found")
|
||||
return
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import hashlib
|
||||
import logging
|
||||
import sqlite3
|
||||
|
|
@ -15,9 +16,10 @@ import numpy as np
|
|||
import sqlite_vec
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import EmbeddingIndex, VectorDBWithIndex
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
|
@ -28,6 +30,15 @@ def serialize_vector(vector: List[float]) -> bytes:
|
|||
return struct.pack(f"{len(vector)}f", *vector)
|
||||
|
||||
|
||||
def _create_sqlite_connection(db_path):
|
||||
"""Create a SQLite connection with sqlite_vec extension loaded."""
|
||||
connection = sqlite3.connect(db_path)
|
||||
connection.enable_load_extension(True)
|
||||
sqlite_vec.load(connection)
|
||||
connection.enable_load_extension(False)
|
||||
return connection
|
||||
|
||||
|
||||
class SQLiteVecIndex(EmbeddingIndex):
|
||||
"""
|
||||
An index implementation that stores embeddings in a SQLite virtual table using sqlite-vec.
|
||||
|
|
@ -36,40 +47,56 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
- A virtual table (vec_chunks_{bank_id}) that holds the serialized vector.
|
||||
"""
|
||||
|
||||
def __init__(self, dimension: int, connection: sqlite3.Connection, bank_id: str):
|
||||
def __init__(self, dimension: int, db_path: str, bank_id: str):
|
||||
self.dimension = dimension
|
||||
self.connection = connection
|
||||
self.db_path = db_path
|
||||
self.bank_id = bank_id
|
||||
self.metadata_table = f"chunks_{bank_id}".replace("-", "_")
|
||||
self.vector_table = f"vec_chunks_{bank_id}".replace("-", "_")
|
||||
|
||||
@classmethod
|
||||
async def create(cls, dimension: int, connection: sqlite3.Connection, bank_id: str):
|
||||
instance = cls(dimension, connection, bank_id)
|
||||
async def create(cls, dimension: int, db_path: str, bank_id: str):
|
||||
instance = cls(dimension, db_path, bank_id)
|
||||
await instance.initialize()
|
||||
return instance
|
||||
|
||||
async def initialize(self) -> None:
|
||||
cur = self.connection.cursor()
|
||||
# Create the table to store chunk metadata.
|
||||
cur.execute(f"""
|
||||
CREATE TABLE IF NOT EXISTS {self.metadata_table} (
|
||||
id TEXT PRIMARY KEY,
|
||||
chunk TEXT
|
||||
);
|
||||
""")
|
||||
# Create the virtual table for embeddings.
|
||||
cur.execute(f"""
|
||||
CREATE VIRTUAL TABLE IF NOT EXISTS {self.vector_table}
|
||||
USING vec0(embedding FLOAT[{self.dimension}], id TEXT);
|
||||
""")
|
||||
self.connection.commit()
|
||||
def _init_tables():
|
||||
connection = _create_sqlite_connection(self.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
# Create the table to store chunk metadata.
|
||||
cur.execute(f"""
|
||||
CREATE TABLE IF NOT EXISTS {self.metadata_table} (
|
||||
id TEXT PRIMARY KEY,
|
||||
chunk TEXT
|
||||
);
|
||||
""")
|
||||
# Create the virtual table for embeddings.
|
||||
cur.execute(f"""
|
||||
CREATE VIRTUAL TABLE IF NOT EXISTS {self.vector_table}
|
||||
USING vec0(embedding FLOAT[{self.dimension}], id TEXT);
|
||||
""")
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
async def delete(self):
|
||||
cur = self.connection.cursor()
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.metadata_table};")
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.vector_table};")
|
||||
self.connection.commit()
|
||||
await asyncio.to_thread(_init_tables)
|
||||
|
||||
async def delete(self) -> None:
|
||||
def _drop_tables():
|
||||
connection = _create_sqlite_connection(self.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.metadata_table};")
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.vector_table};")
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_drop_tables)
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray, batch_size: int = 500):
|
||||
"""
|
||||
|
|
@ -78,42 +105,57 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
embedding (serialized to raw bytes) into the virtual table using the assigned rowid.
|
||||
If any insert fails, the transaction is rolled back to maintain consistency.
|
||||
"""
|
||||
cur = self.connection.cursor()
|
||||
try:
|
||||
# Start transaction
|
||||
cur.execute("BEGIN TRANSACTION")
|
||||
for i in range(0, len(chunks), batch_size):
|
||||
batch_chunks = chunks[i : i + batch_size]
|
||||
batch_embeddings = embeddings[i : i + batch_size]
|
||||
# Prepare metadata inserts
|
||||
metadata_data = [
|
||||
(generate_chunk_id(chunk.metadata["document_id"], chunk.content), chunk.model_dump_json())
|
||||
for chunk in batch_chunks
|
||||
]
|
||||
# Insert metadata (ON CONFLICT to avoid duplicates)
|
||||
cur.executemany(
|
||||
f"""
|
||||
INSERT INTO {self.metadata_table} (id, chunk)
|
||||
VALUES (?, ?)
|
||||
ON CONFLICT(id) DO UPDATE SET chunk = excluded.chunk;
|
||||
""",
|
||||
metadata_data,
|
||||
)
|
||||
# Prepare embeddings inserts
|
||||
embedding_data = [
|
||||
(generate_chunk_id(chunk.metadata["document_id"], chunk.content), serialize_vector(emb.tolist()))
|
||||
for chunk, emb in zip(batch_chunks, batch_embeddings, strict=True)
|
||||
]
|
||||
# Insert embeddings in batch
|
||||
cur.executemany(f"INSERT INTO {self.vector_table} (id, embedding) VALUES (?, ?);", embedding_data)
|
||||
self.connection.commit()
|
||||
assert all(isinstance(chunk.content, str) for chunk in chunks), "SQLiteVecIndex only supports text chunks"
|
||||
|
||||
except sqlite3.Error as e:
|
||||
self.connection.rollback() # Rollback on failure
|
||||
logger.error(f"Error inserting into {self.vector_table}: {e}")
|
||||
def _execute_all_batch_inserts():
|
||||
connection = _create_sqlite_connection(self.db_path)
|
||||
cur = connection.cursor()
|
||||
|
||||
finally:
|
||||
cur.close() # Ensure cursor is closed
|
||||
try:
|
||||
# Start transaction a single transcation for all batches
|
||||
cur.execute("BEGIN TRANSACTION")
|
||||
for i in range(0, len(chunks), batch_size):
|
||||
batch_chunks = chunks[i : i + batch_size]
|
||||
batch_embeddings = embeddings[i : i + batch_size]
|
||||
# Prepare metadata inserts
|
||||
metadata_data = [
|
||||
(generate_chunk_id(chunk.metadata["document_id"], chunk.content), chunk.model_dump_json())
|
||||
for chunk in batch_chunks
|
||||
if isinstance(chunk.content, str)
|
||||
]
|
||||
# Insert metadata (ON CONFLICT to avoid duplicates)
|
||||
cur.executemany(
|
||||
f"""
|
||||
INSERT INTO {self.metadata_table} (id, chunk)
|
||||
VALUES (?, ?)
|
||||
ON CONFLICT(id) DO UPDATE SET chunk = excluded.chunk;
|
||||
""",
|
||||
metadata_data,
|
||||
)
|
||||
# Prepare embeddings inserts
|
||||
embedding_data = [
|
||||
(
|
||||
generate_chunk_id(chunk.metadata["document_id"], chunk.content),
|
||||
serialize_vector(emb.tolist()),
|
||||
)
|
||||
for chunk, emb in zip(batch_chunks, batch_embeddings, strict=True)
|
||||
if isinstance(chunk.content, str)
|
||||
]
|
||||
# Insert embeddings in batch
|
||||
cur.executemany(f"INSERT INTO {self.vector_table} (id, embedding) VALUES (?, ?);", embedding_data)
|
||||
connection.commit()
|
||||
|
||||
except sqlite3.Error as e:
|
||||
connection.rollback() # Rollback on failure
|
||||
logger.error(f"Error inserting into {self.vector_table}: {e}")
|
||||
raise
|
||||
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
# Process all batches in a single thread
|
||||
await asyncio.to_thread(_execute_all_batch_inserts)
|
||||
|
||||
async def query(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
"""
|
||||
|
|
@ -122,18 +164,28 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
"""
|
||||
emb_list = embedding.tolist() if isinstance(embedding, np.ndarray) else list(embedding)
|
||||
emb_blob = serialize_vector(emb_list)
|
||||
cur = self.connection.cursor()
|
||||
query_sql = f"""
|
||||
SELECT m.id, m.chunk, v.distance
|
||||
FROM {self.vector_table} AS v
|
||||
JOIN {self.metadata_table} AS m ON m.id = v.id
|
||||
WHERE v.embedding MATCH ? AND k = ?
|
||||
ORDER BY v.distance;
|
||||
"""
|
||||
cur.execute(query_sql, (emb_blob, k))
|
||||
rows = cur.fetchall()
|
||||
chunks = []
|
||||
scores = []
|
||||
|
||||
def _execute_query():
|
||||
connection = _create_sqlite_connection(self.db_path)
|
||||
cur = connection.cursor()
|
||||
|
||||
try:
|
||||
query_sql = f"""
|
||||
SELECT m.id, m.chunk, v.distance
|
||||
FROM {self.vector_table} AS v
|
||||
JOIN {self.metadata_table} AS m ON m.id = v.id
|
||||
WHERE v.embedding MATCH ? AND k = ?
|
||||
ORDER BY v.distance;
|
||||
"""
|
||||
cur.execute(query_sql, (emb_blob, k))
|
||||
return cur.fetchall()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
rows = await asyncio.to_thread(_execute_query)
|
||||
|
||||
chunks, scores = [], []
|
||||
for _id, chunk_json, distance in rows:
|
||||
try:
|
||||
chunk = Chunk.model_validate_json(chunk_json)
|
||||
|
|
@ -154,67 +206,85 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
and creates a cache of VectorDBWithIndex instances (each wrapping a SQLiteVecIndex).
|
||||
"""
|
||||
|
||||
def __init__(self, config, inference_api: Api.inference) -> None:
|
||||
def __init__(self, config, inference_api: Inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.cache: Dict[str, VectorDBWithIndex] = {}
|
||||
self.connection: Optional[sqlite3.Connection] = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
# Open a connection to the SQLite database (the file is specified in the config).
|
||||
self.connection = sqlite3.connect(self.config.db_path)
|
||||
self.connection.enable_load_extension(True)
|
||||
sqlite_vec.load(self.connection)
|
||||
self.connection.enable_load_extension(False)
|
||||
cur = self.connection.cursor()
|
||||
# Create a table to persist vector DB registrations.
|
||||
cur.execute("""
|
||||
CREATE TABLE IF NOT EXISTS vector_dbs (
|
||||
id TEXT PRIMARY KEY,
|
||||
metadata TEXT
|
||||
);
|
||||
""")
|
||||
self.connection.commit()
|
||||
# Load any existing vector DB registrations.
|
||||
cur.execute("SELECT metadata FROM vector_dbs")
|
||||
rows = cur.fetchall()
|
||||
def _setup_connection():
|
||||
# Open a connection to the SQLite database (the file is specified in the config).
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
# Create a table to persist vector DB registrations.
|
||||
cur.execute("""
|
||||
CREATE TABLE IF NOT EXISTS vector_dbs (
|
||||
id TEXT PRIMARY KEY,
|
||||
metadata TEXT
|
||||
);
|
||||
""")
|
||||
connection.commit()
|
||||
# Load any existing vector DB registrations.
|
||||
cur.execute("SELECT metadata FROM vector_dbs")
|
||||
rows = cur.fetchall()
|
||||
return rows
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
rows = await asyncio.to_thread(_setup_connection)
|
||||
for row in rows:
|
||||
vector_db_data = row[0]
|
||||
vector_db = VectorDB.model_validate_json(vector_db_data)
|
||||
index = await SQLiteVecIndex.create(vector_db.embedding_dimension, self.connection, vector_db.identifier)
|
||||
index = await SQLiteVecIndex.create(
|
||||
vector_db.embedding_dimension, self.config.db_path, vector_db.identifier
|
||||
)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if self.connection:
|
||||
self.connection.close()
|
||||
self.connection = None
|
||||
# nothing to do since we don't maintain a persistent connection
|
||||
pass
|
||||
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
if self.connection is None:
|
||||
raise RuntimeError("SQLite connection not initialized")
|
||||
cur = self.connection.cursor()
|
||||
cur.execute(
|
||||
"INSERT OR REPLACE INTO vector_dbs (id, metadata) VALUES (?, ?)",
|
||||
(vector_db.identifier, vector_db.model_dump_json()),
|
||||
)
|
||||
self.connection.commit()
|
||||
index = await SQLiteVecIndex.create(vector_db.embedding_dimension, self.connection, vector_db.identifier)
|
||||
def _register_db():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"INSERT OR REPLACE INTO vector_dbs (id, metadata) VALUES (?, ?)",
|
||||
(vector_db.identifier, vector_db.model_dump_json()),
|
||||
)
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_register_db)
|
||||
index = await SQLiteVecIndex.create(vector_db.embedding_dimension, self.config.db_path, vector_db.identifier)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
|
||||
async def list_vector_dbs(self) -> List[VectorDB]:
|
||||
return [v.vector_db for v in self.cache.values()]
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if self.connection is None:
|
||||
raise RuntimeError("SQLite connection not initialized")
|
||||
if vector_db_id not in self.cache:
|
||||
logger.warning(f"Vector DB {vector_db_id} not found")
|
||||
return
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
cur = self.connection.cursor()
|
||||
cur.execute("DELETE FROM vector_dbs WHERE id = ?", (vector_db_id,))
|
||||
self.connection.commit()
|
||||
|
||||
def _delete_vector_db_from_registry():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute("DELETE FROM vector_dbs WHERE id = ?", (vector_db_id,))
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_delete_vector_db_from_registry)
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: List[Chunk], ttl_seconds: Optional[int] = None) -> None:
|
||||
if vector_db_id not in self.cache:
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
InlineProviderSpec(
|
||||
api=Api.eval,
|
||||
provider_type="inline::meta-reference",
|
||||
pip_packages=["tree_sitter"],
|
||||
pip_packages=["tree_sitter", "pythainlp", "langdetect", "emoji", "nltk"],
|
||||
module="llama_stack.providers.inline.eval.meta_reference",
|
||||
config_class="llama_stack.providers.inline.eval.meta_reference.MetaReferenceEvalConfig",
|
||||
api_dependencies=[
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
api=Api.safety,
|
||||
provider_type="inline::prompt-guard",
|
||||
pip_packages=[
|
||||
"transformers",
|
||||
"transformers[accelerate]",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu",
|
||||
],
|
||||
module="llama_stack.providers.inline.safety.prompt_guard",
|
||||
|
|
|
|||
|
|
@ -28,6 +28,17 @@ def aggregate_average(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]
|
|||
}
|
||||
|
||||
|
||||
def aggregate_weighted_average(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]:
|
||||
return {
|
||||
"weighted_average": sum(
|
||||
result["score"] * result["weight"]
|
||||
for result in scoring_results
|
||||
if result["score"] is not None and result["weight"] is not None
|
||||
)
|
||||
/ sum(result["weight"] for result in scoring_results if result["weight"] is not None),
|
||||
}
|
||||
|
||||
|
||||
def aggregate_categorical_count(
|
||||
scoring_results: List[ScoringResultRow],
|
||||
) -> Dict[str, Any]:
|
||||
|
|
@ -46,6 +57,7 @@ def aggregate_median(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]:
|
|||
AGGREGATION_FUNCTIONS = {
|
||||
AggregationFunctionType.accuracy: aggregate_accuracy,
|
||||
AggregationFunctionType.average: aggregate_average,
|
||||
AggregationFunctionType.weighted_average: aggregate_weighted_average,
|
||||
AggregationFunctionType.categorical_count: aggregate_categorical_count,
|
||||
AggregationFunctionType.median: aggregate_median,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ from llama_stack.apis.telemetry import QueryCondition, QuerySpansResponse, Span
|
|||
class TelemetryDatasetMixin:
|
||||
"""Mixin class that provides dataset-related functionality for telemetry providers."""
|
||||
|
||||
datasetio_api: DatasetIO
|
||||
datasetio_api: DatasetIO | None
|
||||
|
||||
async def save_spans_to_dataset(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -5,12 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import contextvars
|
||||
import logging
|
||||
import queue
|
||||
import random
|
||||
import threading
|
||||
import uuid
|
||||
from datetime import datetime, timezone
|
||||
from functools import wraps
|
||||
from typing import Any, Callable, Dict, List, Optional
|
||||
|
|
@ -31,11 +30,44 @@ from llama_stack.providers.utils.telemetry.trace_protocol import serialize_value
|
|||
logger = get_logger(__name__, category="core")
|
||||
|
||||
|
||||
def generate_short_uuid(len: int = 8):
|
||||
full_uuid = uuid.uuid4()
|
||||
uuid_bytes = full_uuid.bytes
|
||||
encoded = base64.urlsafe_b64encode(uuid_bytes)
|
||||
return encoded.rstrip(b"=").decode("ascii")[:len]
|
||||
INVALID_SPAN_ID = 0x0000000000000000
|
||||
INVALID_TRACE_ID = 0x00000000000000000000000000000000
|
||||
|
||||
|
||||
def trace_id_to_str(trace_id: int) -> str:
|
||||
"""Convenience trace ID formatting method
|
||||
Args:
|
||||
trace_id: Trace ID int
|
||||
|
||||
Returns:
|
||||
The trace ID as 32-byte hexadecimal string
|
||||
"""
|
||||
return format(trace_id, "032x")
|
||||
|
||||
|
||||
def span_id_to_str(span_id: int) -> str:
|
||||
"""Convenience span ID formatting method
|
||||
Args:
|
||||
span_id: Span ID int
|
||||
|
||||
Returns:
|
||||
The span ID as 16-byte hexadecimal string
|
||||
"""
|
||||
return format(span_id, "016x")
|
||||
|
||||
|
||||
def generate_span_id() -> str:
|
||||
span_id = random.getrandbits(64)
|
||||
while span_id == INVALID_SPAN_ID:
|
||||
span_id = random.getrandbits(64)
|
||||
return span_id_to_str(span_id)
|
||||
|
||||
|
||||
def generate_trace_id() -> str:
|
||||
trace_id = random.getrandbits(128)
|
||||
while trace_id == INVALID_TRACE_ID:
|
||||
trace_id = random.getrandbits(128)
|
||||
return trace_id_to_str(trace_id)
|
||||
|
||||
|
||||
CURRENT_TRACE_CONTEXT = contextvars.ContextVar("trace_context", default=None)
|
||||
|
|
@ -83,7 +115,7 @@ class TraceContext:
|
|||
def push_span(self, name: str, attributes: Dict[str, Any] = None) -> Span:
|
||||
current_span = self.get_current_span()
|
||||
span = Span(
|
||||
span_id=generate_short_uuid(),
|
||||
span_id=generate_span_id(),
|
||||
trace_id=self.trace_id,
|
||||
name=name,
|
||||
start_time=datetime.now(timezone.utc),
|
||||
|
|
@ -143,7 +175,7 @@ async def start_trace(name: str, attributes: Dict[str, Any] = None) -> TraceCont
|
|||
logger.debug("No Telemetry implementation set. Skipping trace initialization...")
|
||||
return
|
||||
|
||||
trace_id = generate_short_uuid(16)
|
||||
trace_id = generate_trace_id()
|
||||
context = TraceContext(BACKGROUND_LOGGER, trace_id)
|
||||
context.push_span(name, {"__root__": True, **(attributes or {})})
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue