mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
fix: allow use of models registered at runtime (#1980)
# What does this PR do? fix a bug where models registered at runtime could not be used. ``` $ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct $ curl http://localhost:8321/v1/openai/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "test-model", "messages": [{"role": "user", "content": "What is the weather like in Boston today?"}] }' =(client)=> {"detail":"Internal server error: An unexpected error occurred."} =(server)=> TypeError: Missing required arguments; Expected either ('messages' and 'model') or ('messages', 'model' and 'stream') arguments to be given ``` *root cause:* test-model is not added to ModelRegistryHelper's alias_to_provider_id_map. as part of the fix, this adds tests for ModelRegistryHelper and defines its expected behavior. user visible behavior changes - | action | existing behavior | new behavior | | -- | -- | -- | | double register | success (but no change) | error | | register unknown | success (fail when used) | error | existing behavior for register unknown model and double register - ``` $ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct-unknown Successfully registered model test-model $ llama-stack-client models list | grep test-model │ llm │ test-model │ meta/llama-3.1-70b-instruct-unknown │ │ nv… │ $ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct Successfully registered model test-model $ llama-stack-client models list | grep test-model │ llm │ test-model │ meta/llama-3.1-70b-instruct-unknown │ │ nv… │ ``` new behavior for register unknown - ``` $ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct-unknown ╭──────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Failed to register model │ │ │ │ Error Type: BadRequestError │ │ Details: Error code: 400 - {'detail': "Invalid value: Model id │ │ 'meta/llama-3.1-70b-instruct-unknown' is not supported. Supported ids are: │ │ meta/llama-3.1-70b-instruct, snowflake/arctic-embed-l, meta/llama-3.2-1b-instruct, │ │ nvidia/nv-embedqa-mistral-7b-v2, meta/llama-3.2-90b-vision-instruct, meta/llama-3.2-3b-instruct, │ │ meta/llama-3.2-11b-vision-instruct, meta/llama-3.1-405b-instruct, meta/llama3-8b-instruct, │ │ meta/llama3-70b-instruct, nvidia/llama-3.2-nv-embedqa-1b-v2, meta/llama-3.1-8b-instruct, │ │ nvidia/nv-embedqa-e5-v5"} │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ ``` new behavior for double register - ``` $ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct Successfully registered model test-model $ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.2-1b-instruct ╭──────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Failed to register model │ │ │ │ Error Type: BadRequestError │ │ Details: Error code: 400 - {'detail': "Invalid value: Model id 'test-model' is already │ │ registered. Please use a different id or unregister it first."} │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ ``` ## Test Plan ``` uv run pytest -v tests/unit/providers/utils/test_model_registry.py ```
This commit is contained in:
parent
64829947d0
commit
88a796ca5a
5 changed files with 231 additions and 27 deletions
|
@ -22,6 +22,27 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class ModelsProtocolPrivate(Protocol):
|
||||
"""
|
||||
Protocol for model management.
|
||||
|
||||
This allows users to register their preferred model identifiers.
|
||||
|
||||
Model registration requires -
|
||||
- a provider, used to route the registration request
|
||||
- a model identifier, user's intended name for the model during inference
|
||||
- a provider model identifier, a model identifier supported by the provider
|
||||
|
||||
Providers will only accept registration for provider model ids they support.
|
||||
|
||||
Example,
|
||||
register: provider x my-model-id x provider-model-id
|
||||
-> Error if provider does not support provider-model-id
|
||||
-> Error if my-model-id is already registered
|
||||
-> Success if provider supports provider-model-id
|
||||
inference: my-model-id x ...
|
||||
-> Provider uses provider-model-id for inference
|
||||
"""
|
||||
|
||||
async def register_model(self, model: Model) -> Model: ...
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None: ...
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
from ollama import AsyncClient
|
||||
from ollama import AsyncClient # type: ignore[attr-defined]
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
|
@ -333,7 +333,10 @@ class OllamaInferenceAdapter(
|
|||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
model = await self.register_helper.register_model(model)
|
||||
try:
|
||||
model = await self.register_helper.register_model(model)
|
||||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
if model.model_type == ModelType.embedding:
|
||||
logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...")
|
||||
await self.client.pull(model.provider_resource_id)
|
||||
|
@ -342,9 +345,12 @@ class OllamaInferenceAdapter(
|
|||
# - models not currently running are run by the ollama server as needed
|
||||
response = await self.client.list()
|
||||
available_models = [m["model"] for m in response["models"]]
|
||||
if model.provider_resource_id not in available_models:
|
||||
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
|
||||
if provider_resource_id is None:
|
||||
provider_resource_id = model.provider_resource_id
|
||||
if provider_resource_id not in available_models:
|
||||
available_models_latest = [m["model"].split(":latest")[0] for m in response["models"]]
|
||||
if model.provider_resource_id in available_models_latest:
|
||||
if provider_resource_id in available_models_latest:
|
||||
logger.warning(
|
||||
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
|
||||
)
|
||||
|
@ -352,6 +358,7 @@ class OllamaInferenceAdapter(
|
|||
raise ValueError(
|
||||
f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}"
|
||||
)
|
||||
model.provider_resource_id = provider_resource_id
|
||||
|
||||
return model
|
||||
|
||||
|
|
|
@ -372,7 +372,10 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
# self.client should only be created after the initialization is complete to avoid asyncio cross-context errors.
|
||||
# Changing this may lead to unpredictable behavior.
|
||||
client = self._create_client() if self.client is None else self.client
|
||||
model = await self.register_helper.register_model(model)
|
||||
try:
|
||||
model = await self.register_helper.register_model(model)
|
||||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
res = await client.models.list()
|
||||
available_models = [m.id async for m in res]
|
||||
if model.provider_resource_id not in available_models:
|
||||
|
|
|
@ -75,40 +75,50 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
def get_provider_model_id(self, identifier: str) -> Optional[str]:
|
||||
return self.alias_to_provider_id_map.get(identifier, None)
|
||||
|
||||
# TODO: why keep a separate llama model mapping?
|
||||
def get_llama_model(self, provider_model_id: str) -> Optional[str]:
|
||||
return self.provider_id_to_llama_model_map.get(provider_model_id, None)
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
if not (supported_model_id := self.get_provider_model_id(model.provider_resource_id)):
|
||||
raise ValueError(
|
||||
f"Model '{model.provider_resource_id}' is not supported. Supported models are: {', '.join(self.alias_to_provider_id_map.keys())}"
|
||||
)
|
||||
provider_resource_id = self.get_provider_model_id(model.model_id)
|
||||
if model.model_type == ModelType.embedding:
|
||||
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model
|
||||
provider_resource_id = model.provider_resource_id
|
||||
else:
|
||||
provider_resource_id = self.get_provider_model_id(model.provider_resource_id)
|
||||
|
||||
if provider_resource_id:
|
||||
model.provider_resource_id = provider_resource_id
|
||||
if provider_resource_id != supported_model_id: # be idemopotent, only reject differences
|
||||
raise ValueError(
|
||||
f"Model id '{model.model_id}' is already registered. Please use a different id or unregister it first."
|
||||
)
|
||||
else:
|
||||
llama_model = model.metadata.get("llama_model")
|
||||
if llama_model is None:
|
||||
return model
|
||||
if llama_model:
|
||||
existing_llama_model = self.get_llama_model(model.provider_resource_id)
|
||||
if existing_llama_model:
|
||||
if existing_llama_model != llama_model:
|
||||
raise ValueError(
|
||||
f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'"
|
||||
)
|
||||
else:
|
||||
if llama_model not in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR:
|
||||
raise ValueError(
|
||||
f"Invalid llama_model '{llama_model}' specified in metadata. "
|
||||
f"Must be one of: {', '.join(ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR.keys())}"
|
||||
)
|
||||
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[llama_model]
|
||||
)
|
||||
|
||||
existing_llama_model = self.get_llama_model(model.provider_resource_id)
|
||||
if existing_llama_model:
|
||||
if existing_llama_model != llama_model:
|
||||
raise ValueError(
|
||||
f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'"
|
||||
)
|
||||
else:
|
||||
if llama_model not in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR:
|
||||
raise ValueError(
|
||||
f"Invalid llama_model '{llama_model}' specified in metadata. "
|
||||
f"Must be one of: {', '.join(ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR.keys())}"
|
||||
)
|
||||
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[llama_model]
|
||||
)
|
||||
self.alias_to_provider_id_map[model.model_id] = supported_model_id
|
||||
|
||||
return model
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
# TODO: should we block unregistering base supported provider model IDs?
|
||||
if model_id not in self.alias_to_provider_id_map:
|
||||
raise ValueError(f"Model id '{model_id}' is not registered.")
|
||||
|
||||
del self.alias_to_provider_id_map[model_id]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue