mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-24 06:28:03 +00:00
fix chunk deletion
This commit is contained in:
parent
c0be74b93e
commit
88cfab2768
10 changed files with 102 additions and 49 deletions
|
|
@ -26,6 +26,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
|
|||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
|
@ -115,8 +116,10 @@ class ChromaIndex(EmbeddingIndex):
|
|||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Chroma")
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
raise NotImplementedError("delete_chunk is not supported in Chroma")
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a single chunk from the Chroma collection by its ID."""
|
||||
ids = [f"{chunk.document_id}:{chunk.chunk_id}" for chunk in chunks_for_deletion]
|
||||
await maybe_await(self.collection.delete(ids=ids))
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
|
|
@ -144,6 +147,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.cache = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
self.files_api = files_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
|
@ -227,5 +231,10 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a Chroma vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
|||
|
|
@ -28,6 +28,7 @@ from llama_stack.providers.utils.kvstore.api import KVStore
|
|||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
RERANKER_TYPE_WEIGHTED,
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
|
@ -287,14 +288,15 @@ class MilvusIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=filtered_chunks, scores=filtered_scores)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the Milvus collection."""
|
||||
chunk_ids_str = ",".join(f"'{c.chunk_id}'" for c in chunks_for_deletion)
|
||||
try:
|
||||
await asyncio.to_thread(
|
||||
self.client.delete, collection_name=self.collection_name, filter=f'chunk_id == "{chunk_id}"'
|
||||
self.client.delete, collection_name=self.collection_name, filter=f"chunk_id IN [{chunk_ids_str}]"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting chunk {chunk_id} from Milvus collection {self.collection_name}: {e}")
|
||||
logger.error(f"Error deleting chunks from Milvus collection {self.collection_name}: {e}")
|
||||
raise
|
||||
|
||||
|
||||
|
|
@ -420,12 +422,10 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a chunk from a milvus vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(store_id)
|
||||
|
||||
for chunk_id in chunk_ids:
|
||||
# Use the index's delete_chunk method
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
|||
|
|
@ -27,6 +27,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
|
|||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
|
@ -163,10 +164,11 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the PostgreSQL table."""
|
||||
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE id = %s", (chunk_id,))
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE id = ANY(%s)", (chunk_ids,))
|
||||
|
||||
|
||||
class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
|
|
@ -275,12 +277,10 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a chunk from a PostgreSQL vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(store_id)
|
||||
|
||||
for chunk_id in chunk_ids:
|
||||
# Use the index's delete_chunk method
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
|||
|
|
@ -29,6 +29,7 @@ from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig a
|
|||
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
|
@ -88,15 +89,16 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
await self.client.upsert(collection_name=self.collection_name, points=points)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the Qdrant collection."""
|
||||
chunk_ids = [convert_id(c.chunk_id) for c in chunks_for_deletion]
|
||||
try:
|
||||
await self.client.delete(
|
||||
collection_name=self.collection_name,
|
||||
points_selector=models.PointIdsList(points=[convert_id(chunk_id)]),
|
||||
points_selector=models.PointIdsList(points=chunk_ids),
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Error deleting chunk {chunk_id} from Qdrant collection {self.collection_name}: {e}")
|
||||
log.error(f"Error deleting chunks from Qdrant collection {self.collection_name}: {e}")
|
||||
raise
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
|
|
@ -266,10 +268,10 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
async with self._qdrant_lock:
|
||||
await super().openai_attach_file_to_vector_store(vector_store_id, file_id, attributes, chunking_strategy)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a Qdrant vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
for chunk_id in chunk_ids:
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue