fix chunk deletion

This commit is contained in:
Ashwin Bharambe 2025-08-12 14:13:53 -07:00
parent c0be74b93e
commit 88cfab2768
10 changed files with 102 additions and 49 deletions

View file

@ -38,7 +38,11 @@ from llama_stack.apis.vector_io import (
VectorStoreSearchResponsePage,
)
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
content_from_data_and_mime_type,
make_overlapped_chunks,
)
logger = logging.getLogger(__name__)
@ -154,8 +158,8 @@ class OpenAIVectorStoreMixin(ABC):
self.openai_vector_stores = await self._load_openai_vector_stores()
@abstractmethod
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a vector store."""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a vector store."""
pass
@abstractmethod
@ -767,7 +771,21 @@ class OpenAIVectorStoreMixin(ABC):
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
chunks = [Chunk.model_validate(c) for c in dict_chunks]
await self.delete_chunks(vector_store_id, [str(c.chunk_id) for c in chunks if c.chunk_id])
# Create ChunkForDeletion objects with both chunk_id and document_id
chunks_for_deletion = []
for c in chunks:
if c.chunk_id:
document_id = c.metadata.get("document_id") or (
c.chunk_metadata.document_id if c.chunk_metadata else None
)
if document_id:
chunks_for_deletion.append(ChunkForDeletion(chunk_id=str(c.chunk_id), document_id=document_id))
else:
logger.warning(f"Chunk {c.chunk_id} has no document_id, skipping deletion")
if chunks_for_deletion:
await self.delete_chunks(vector_store_id, chunks_for_deletion)
store_info = self.openai_vector_stores[vector_store_id].copy()

View file

@ -16,6 +16,7 @@ from urllib.parse import unquote
import httpx
import numpy as np
from numpy.typing import NDArray
from pydantic import BaseModel
from llama_stack.apis.common.content_types import (
URL,
@ -34,6 +35,18 @@ from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
log = logging.getLogger(__name__)
class ChunkForDeletion(BaseModel):
"""Information needed to delete a chunk from a vector store.
:param chunk_id: The ID of the chunk to delete
:param document_id: The ID of the document this chunk belongs to
"""
chunk_id: str
document_id: str
# Constants for reranker types
RERANKER_TYPE_RRF = "rrf"
RERANKER_TYPE_WEIGHTED = "weighted"
@ -232,7 +245,7 @@ class EmbeddingIndex(ABC):
raise NotImplementedError()
@abstractmethod
async def delete_chunk(self, chunk_id: str):
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]):
raise NotImplementedError()
@abstractmethod