mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-02 06:50:01 +00:00
Merge branch 'main' into sambanova-inferene
This commit is contained in:
commit
89ab2be302
385 changed files with 39001 additions and 9280 deletions
|
|
@ -1,16 +1,41 @@
|
|||
# LLama Stack UI
|
||||
# (Experimental) LLama Stack UI
|
||||
|
||||
[!NOTE] This is a work in progress.
|
||||
## Docker Setup
|
||||
|
||||
## Prerequisite
|
||||
- Start up Llama Stack Server
|
||||
```
|
||||
llama stack run
|
||||
```
|
||||
:warning: This is a work in progress.
|
||||
|
||||
## Running Streamlit App
|
||||
## Developer Setup
|
||||
|
||||
1. Start up Llama Stack API server. More details [here](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html).
|
||||
|
||||
```
|
||||
llama stack build --template together --image-type conda
|
||||
|
||||
llama stack run together
|
||||
```
|
||||
|
||||
2. (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page).
|
||||
|
||||
```bash
|
||||
$ llama-stack-client datasets register \
|
||||
--dataset-id "mmlu" \
|
||||
--provider-id "huggingface" \
|
||||
--url "https://huggingface.co/datasets/llamastack/evals" \
|
||||
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
|
||||
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
|
||||
```
|
||||
|
||||
```bash
|
||||
$ llama-stack-client eval_tasks register \
|
||||
--eval-task-id meta-reference-mmlu \
|
||||
--provider-id meta-reference \
|
||||
--dataset-id mmlu \
|
||||
--scoring-functions basic::regex_parser_multiple_choice_answer
|
||||
```
|
||||
|
||||
3. Start Streamlit UI
|
||||
|
||||
```bash
|
||||
cd llama_stack/distribution/ui
|
||||
pip install -r requirements.txt
|
||||
streamlit run app.py
|
||||
|
|
|
|||
|
|
@ -129,7 +129,7 @@ def application_evaluation_page():
|
|||
|
||||
# Display current row results using separate containers
|
||||
progress_text_container.write(
|
||||
f"Expand to see current processed result ({i+1}/{len(rows)})"
|
||||
f"Expand to see current processed result ({i + 1} / {len(rows)})"
|
||||
)
|
||||
results_container.json(
|
||||
score_res.to_json(),
|
||||
|
|
|
|||
|
|
@ -232,7 +232,7 @@ def run_evaluation_3():
|
|||
output_res[scoring_fn].append(eval_res.scores[scoring_fn].score_rows[0])
|
||||
|
||||
progress_text_container.write(
|
||||
f"Expand to see current processed result ({i+1}/{len(rows)})"
|
||||
f"Expand to see current processed result ({i + 1} / {len(rows)})"
|
||||
)
|
||||
results_container.json(eval_res, expanded=2)
|
||||
|
||||
|
|
|
|||
|
|
@ -11,7 +11,9 @@ from modules.api import llama_stack_api
|
|||
with st.sidebar:
|
||||
st.header("Configuration")
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [model.identifier for model in available_models]
|
||||
available_models = [
|
||||
model.identifier for model in available_models if model.model_type == "llm"
|
||||
]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
available_models,
|
||||
|
|
|
|||
|
|
@ -74,7 +74,9 @@ def rag_chat_page():
|
|||
]
|
||||
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [model.identifier for model in available_models]
|
||||
available_models = [
|
||||
model.identifier for model in available_models if model.model_type == "llm"
|
||||
]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
available_models,
|
||||
|
|
@ -116,8 +118,6 @@ def rag_chat_page():
|
|||
with st.chat_message(message["role"]):
|
||||
st.markdown(message["content"])
|
||||
|
||||
selected_model = llama_stack_api.client.models.list()[0].identifier
|
||||
|
||||
agent_config = AgentConfig(
|
||||
model=selected_model,
|
||||
instructions=system_prompt,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue