Merge branch 'main' into sambanova-inferene

This commit is contained in:
snova-edwardm 2025-01-14 10:04:52 -08:00 committed by GitHub
commit 89ab2be302
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
385 changed files with 39001 additions and 9280 deletions

View file

@ -4,26 +4,48 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import * # noqa: F403
import json
from typing import AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
from botocore.client import BaseClient
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
)
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
model_aliases = [
MODEL_ALIASES = [
build_model_alias(
"meta.llama3-1-8b-instruct-v1:0",
CoreModelId.llama3_1_8b_instruct.value,
@ -39,10 +61,9 @@ model_aliases = [
]
# NOTE: this is not quite tested after the recent refactors
class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: BedrockConfig) -> None:
ModelRegistryHelper.__init__(self, model_aliases)
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
self._config = config
self._client = create_bedrock_client(config)
@ -61,7 +82,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -69,232 +90,6 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
) -> AsyncGenerator:
raise NotImplementedError()
@staticmethod
def _bedrock_stop_reason_to_stop_reason(bedrock_stop_reason: str) -> StopReason:
if bedrock_stop_reason == "max_tokens":
return StopReason.out_of_tokens
return StopReason.end_of_turn
@staticmethod
def _builtin_tool_name_to_enum(tool_name_str: str) -> Union[BuiltinTool, str]:
for builtin_tool in BuiltinTool:
if builtin_tool.value == tool_name_str:
return builtin_tool
else:
return tool_name_str
@staticmethod
def _bedrock_message_to_message(converse_api_res: Dict) -> Message:
stop_reason = BedrockInferenceAdapter._bedrock_stop_reason_to_stop_reason(
converse_api_res["stopReason"]
)
bedrock_message = converse_api_res["output"]["message"]
role = bedrock_message["role"]
contents = bedrock_message["content"]
tool_calls = []
text_content = ""
for content in contents:
if "toolUse" in content:
tool_use = content["toolUse"]
tool_calls.append(
ToolCall(
tool_name=BedrockInferenceAdapter._builtin_tool_name_to_enum(
tool_use["name"]
),
arguments=tool_use["input"] if "input" in tool_use else None,
call_id=tool_use["toolUseId"],
)
)
elif "text" in content:
text_content += content["text"]
return CompletionMessage(
role=role,
content=text_content,
stop_reason=stop_reason,
tool_calls=tool_calls,
)
@staticmethod
def _messages_to_bedrock_messages(
messages: List[Message],
) -> Tuple[List[Dict], Optional[List[Dict]]]:
bedrock_messages = []
system_bedrock_messages = []
user_contents = []
assistant_contents = None
for message in messages:
role = message.role
content_list = (
message.content
if isinstance(message.content, list)
else [message.content]
)
if role == "ipython" or role == "user":
if not user_contents:
user_contents = []
if role == "ipython":
user_contents.extend(
[
{
"toolResult": {
"toolUseId": message.call_id,
"content": [
{"text": content} for content in content_list
],
}
}
]
)
else:
user_contents.extend(
[{"text": content} for content in content_list]
)
if assistant_contents:
bedrock_messages.append(
{"role": "assistant", "content": assistant_contents}
)
assistant_contents = None
elif role == "system":
system_bedrock_messages.extend(
[{"text": content} for content in content_list]
)
elif role == "assistant":
if not assistant_contents:
assistant_contents = []
assistant_contents.extend(
[
{
"text": content,
}
for content in content_list
]
+ [
{
"toolUse": {
"input": tool_call.arguments,
"name": (
tool_call.tool_name
if isinstance(tool_call.tool_name, str)
else tool_call.tool_name.value
),
"toolUseId": tool_call.call_id,
}
}
for tool_call in message.tool_calls
]
)
if user_contents:
bedrock_messages.append({"role": "user", "content": user_contents})
user_contents = None
else:
# Unknown role
pass
if user_contents:
bedrock_messages.append({"role": "user", "content": user_contents})
if assistant_contents:
bedrock_messages.append(
{"role": "assistant", "content": assistant_contents}
)
if system_bedrock_messages:
return bedrock_messages, system_bedrock_messages
return bedrock_messages, None
@staticmethod
def get_bedrock_inference_config(sampling_params: Optional[SamplingParams]) -> Dict:
inference_config = {}
if sampling_params:
param_mapping = {
"max_tokens": "maxTokens",
"temperature": "temperature",
"top_p": "topP",
}
for k, v in param_mapping.items():
if getattr(sampling_params, k):
inference_config[v] = getattr(sampling_params, k)
return inference_config
@staticmethod
def _tool_parameters_to_input_schema(
tool_parameters: Optional[Dict[str, ToolParamDefinition]],
) -> Dict:
input_schema = {"type": "object"}
if not tool_parameters:
return input_schema
json_properties = {}
required = []
for name, param in tool_parameters.items():
json_property = {
"type": param.param_type,
}
if param.description:
json_property["description"] = param.description
if param.required:
required.append(name)
json_properties[name] = json_property
input_schema["properties"] = json_properties
if required:
input_schema["required"] = required
return input_schema
@staticmethod
def _tools_to_tool_config(
tools: Optional[List[ToolDefinition]], tool_choice: Optional[ToolChoice]
) -> Optional[Dict]:
if not tools:
return None
bedrock_tools = []
for tool in tools:
tool_name = (
tool.tool_name
if isinstance(tool.tool_name, str)
else tool.tool_name.value
)
tool_spec = {
"toolSpec": {
"name": tool_name,
"inputSchema": {
"json": BedrockInferenceAdapter._tool_parameters_to_input_schema(
tool.parameters
),
},
}
}
if tool.description:
tool_spec["toolSpec"]["description"] = tool.description
bedrock_tools.append(tool_spec)
tool_config = {
"tools": bedrock_tools,
}
if tool_choice:
tool_config["toolChoice"] = (
{"any": {}}
if tool_choice.value == ToolChoice.required
else {"auto": {}}
)
return tool_config
async def chat_completion(
self,
model_id: str,
@ -303,7 +98,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[
@ -330,122 +125,91 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
params = self._get_params_for_chat_completion(request)
converse_api_res = self.client.converse(**params)
params = await self._get_params_for_chat_completion(request)
res = self.client.invoke_model(**params)
chunk = next(res["body"])
result = json.loads(chunk.decode("utf-8"))
output_message = BedrockInferenceAdapter._bedrock_message_to_message(
converse_api_res
choice = OpenAICompatCompletionChoice(
finish_reason=result["stop_reason"],
text=result["generation"],
)
return ChatCompletionResponse(
completion_message=output_message,
logprobs=None,
)
response = OpenAICompatCompletionResponse(choices=[choice])
return process_chat_completion_response(response, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator:
params = self._get_params_for_chat_completion(request)
converse_stream_api_res = self.client.converse_stream(**params)
event_stream = converse_stream_api_res["stream"]
params = await self._get_params_for_chat_completion(request)
res = self.client.invoke_model_with_response_stream(**params)
event_stream = res["body"]
for chunk in event_stream:
if "messageStart" in chunk:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
async def _generate_and_convert_to_openai_compat():
for chunk in event_stream:
chunk = chunk["chunk"]["bytes"]
result = json.loads(chunk.decode("utf-8"))
choice = OpenAICompatCompletionChoice(
finish_reason=result["stop_reason"],
text=result["generation"],
)
elif "contentBlockStart" in chunk:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=ToolCall(
tool_name=chunk["contentBlockStart"]["toolUse"]["name"],
call_id=chunk["contentBlockStart"]["toolUse"][
"toolUseId"
],
),
parse_status=ToolCallParseStatus.started,
),
)
)
elif "contentBlockDelta" in chunk:
if "text" in chunk["contentBlockDelta"]["delta"]:
delta = chunk["contentBlockDelta"]["delta"]["text"]
else:
delta = ToolCallDelta(
content=ToolCall(
arguments=chunk["contentBlockDelta"]["delta"]["toolUse"][
"input"
]
),
parse_status=ToolCallParseStatus.success,
)
yield OpenAICompatCompletionResponse(choices=[choice])
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
)
)
elif "contentBlockStop" in chunk:
# Ignored
pass
elif "messageStop" in chunk:
stop_reason = (
BedrockInferenceAdapter._bedrock_stop_reason_to_stop_reason(
chunk["messageStop"]["stopReason"]
)
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(
stream, self.formatter
):
yield chunk
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
elif "metadata" in chunk:
# Ignored
pass
else:
# Ignored
pass
def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> Dict:
async def _get_params_for_chat_completion(
self, request: ChatCompletionRequest
) -> Dict:
bedrock_model = request.model
inference_config = BedrockInferenceAdapter.get_bedrock_inference_config(
request.sampling_params
)
tool_config = BedrockInferenceAdapter._tools_to_tool_config(
request.tools, request.tool_choice
)
bedrock_messages, system_bedrock_messages = (
BedrockInferenceAdapter._messages_to_bedrock_messages(request.messages)
)
converse_api_params = {
"modelId": bedrock_model,
"messages": bedrock_messages,
inference_config = {}
param_mapping = {
"max_tokens": "max_gen_len",
"temperature": "temperature",
"top_p": "top_p",
}
if inference_config:
converse_api_params["inferenceConfig"] = inference_config
# Tool use is not supported in streaming mode
if tool_config and not request.stream:
converse_api_params["toolConfig"] = tool_config
if system_bedrock_messages:
converse_api_params["system"] = system_bedrock_messages
for k, v in param_mapping.items():
if getattr(request.sampling_params, k):
inference_config[v] = getattr(request.sampling_params, k)
return converse_api_params
prompt = await chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
)
return {
"modelId": bedrock_model,
"body": json.dumps(
{
"prompt": prompt,
**inference_config,
}
),
}
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
embeddings = []
for content in contents:
assert not content_has_media(
content
), "Bedrock does not support media for embeddings"
input_text = interleaved_content_as_str(content)
input_body = {"inputText": input_text}
body = json.dumps(input_body)
response = self.client.invoke_model(
body=body,
modelId=model.provider_resource_id,
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
embeddings.append(response_body.get("embedding"))
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -4,19 +4,28 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from typing import AsyncGenerator, List, Optional, Union
from cerebras.cloud.sdk import AsyncCerebras
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.inference import * # noqa: F403
from llama_models.datatypes import CoreModelId
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
CompletionRequest,
CompletionResponse,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
@ -35,15 +44,14 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
from .config import CerebrasImplConfig
model_aliases = [
build_model_alias(
"llama3.1-8b",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"llama3.1-70b",
CoreModelId.llama3_1_70b_instruct.value,
"llama-3.3-70b",
CoreModelId.llama3_3_70b_instruct.value,
),
]
@ -58,7 +66,8 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
self.formatter = ChatFormat(Tokenizer.get_instance())
self.client = AsyncCerebras(
base_url=self.config.base_url, api_key=self.config.api_key
base_url=self.config.base_url,
api_key=self.config.api_key.get_secret_value(),
)
async def initialize(self) -> None:
@ -70,7 +79,7 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -95,14 +104,14 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
async def _nonstream_completion(
self, request: CompletionRequest
) -> CompletionResponse:
params = self._get_params(request)
params = await self._get_params(request)
r = await self.client.completions.create(**params)
return process_completion_response(r, self.formatter)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = self._get_params(request)
params = await self._get_params(request)
stream = await self.client.completions.create(**params)
@ -116,7 +125,7 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
@ -142,7 +151,7 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
async def _nonstream_chat_completion(
self, request: CompletionRequest
) -> CompletionResponse:
params = self._get_params(request)
params = await self._get_params(request)
r = await self.client.completions.create(**params)
@ -151,7 +160,7 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
async def _stream_chat_completion(
self, request: CompletionRequest
) -> AsyncGenerator:
params = self._get_params(request)
params = await self._get_params(request)
stream = await self.client.completions.create(**params)
@ -160,19 +169,19 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
):
yield chunk
def _get_params(
async def _get_params(
self, request: Union[ChatCompletionRequest, CompletionRequest]
) -> dict:
if request.sampling_params and request.sampling_params.top_k:
raise ValueError("`top_k` not supported by Cerebras")
prompt = ""
if type(request) == ChatCompletionRequest:
prompt = chat_completion_request_to_prompt(
if isinstance(request, ChatCompletionRequest):
prompt = await chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
)
elif type(request) == CompletionRequest:
prompt = completion_request_to_prompt(request, self.formatter)
elif isinstance(request, CompletionRequest):
prompt = await completion_request_to_prompt(request, self.formatter)
else:
raise ValueError(f"Unknown request type {type(request)}")
@ -186,6 +195,6 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -8,7 +8,7 @@ import os
from typing import Any, Dict, Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
DEFAULT_BASE_URL = "https://api.cerebras.ai"
@ -19,7 +19,7 @@ class CerebrasImplConfig(BaseModel):
default=os.environ.get("CEREBRAS_BASE_URL", DEFAULT_BASE_URL),
description="Base URL for the Cerebras API",
)
api_key: Optional[str] = Field(
api_key: Optional[SecretStr] = Field(
default=os.environ.get("CEREBRAS_API_KEY"),
description="Cerebras API Key",
)

View file

@ -4,19 +4,27 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from typing import AsyncGenerator, List, Optional
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
@ -32,7 +40,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
from .config import DatabricksImplConfig
model_aliases = [
build_model_alias(
"databricks-meta-llama-3-1-70b-instruct",
@ -63,7 +70,7 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
async def completion(
self,
model: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -79,7 +86,7 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
@ -136,6 +143,6 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -7,23 +7,23 @@
from typing import Any, Dict, Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
@json_schema_type
class FireworksImplConfig(BaseModel):
url: str = Field(
default="https://api.fireworks.ai/inference",
default="https://api.fireworks.ai/inference/v1",
description="The URL for the Fireworks server",
)
api_key: Optional[str] = Field(
api_key: Optional[SecretStr] = Field(
default=None,
description="The Fireworks.ai API Key",
)
@classmethod
def sample_run_config(cls) -> Dict[str, Any]:
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"url": "https://api.fireworks.ai/inference",
"url": "https://api.fireworks.ai/inference/v1",
"api_key": "${env.FIREWORKS_API_KEY}",
}

View file

@ -4,21 +4,37 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from typing import AsyncGenerator, List, Optional, Union
from fireworks.client import Fireworks
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
ResponseFormatType,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -28,48 +44,52 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
convert_message_to_dict,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
from .config import FireworksImplConfig
MODEL_ALIASES = [
build_model_alias(
"fireworks/llama-v3p1-8b-instruct",
"accounts/fireworks/models/llama-v3p1-8b-instruct",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"fireworks/llama-v3p1-70b-instruct",
"accounts/fireworks/models/llama-v3p1-70b-instruct",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias(
"fireworks/llama-v3p1-405b-instruct",
"accounts/fireworks/models/llama-v3p1-405b-instruct",
CoreModelId.llama3_1_405b_instruct.value,
),
build_model_alias(
"fireworks/llama-v3p2-1b-instruct",
"accounts/fireworks/models/llama-v3p2-1b-instruct",
CoreModelId.llama3_2_1b_instruct.value,
),
build_model_alias(
"fireworks/llama-v3p2-3b-instruct",
"accounts/fireworks/models/llama-v3p2-3b-instruct",
CoreModelId.llama3_2_3b_instruct.value,
),
build_model_alias(
"fireworks/llama-v3p2-11b-vision-instruct",
"accounts/fireworks/models/llama-v3p2-11b-vision-instruct",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias(
"fireworks/llama-v3p2-90b-vision-instruct",
"accounts/fireworks/models/llama-v3p2-90b-vision-instruct",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_model_alias(
"fireworks/llama-guard-3-8b",
"accounts/fireworks/models/llama-v3p3-70b-instruct",
CoreModelId.llama3_3_70b_instruct.value,
),
build_model_alias(
"accounts/fireworks/models/llama-guard-3-8b",
CoreModelId.llama_guard_3_8b.value,
),
build_model_alias(
"fireworks/llama-guard-3-11b-vision",
"accounts/fireworks/models/llama-guard-3-11b-vision",
CoreModelId.llama_guard_3_11b_vision.value,
),
]
@ -89,23 +109,25 @@ class FireworksInferenceAdapter(
async def shutdown(self) -> None:
pass
def _get_client(self) -> Fireworks:
fireworks_api_key = None
def _get_api_key(self) -> str:
if self.config.api_key is not None:
fireworks_api_key = self.config.api_key
return self.config.api_key.get_secret_value()
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.fireworks_api_key:
raise ValueError(
'Pass Fireworks API Key in the header X-LlamaStack-ProviderData as { "fireworks_api_key": <your api key>}'
'Pass Fireworks API Key in the header X-LlamaStack-Provider-Data as { "fireworks_api_key": <your api key>}'
)
fireworks_api_key = provider_data.fireworks_api_key
return provider_data.fireworks_api_key
def _get_client(self) -> Fireworks:
fireworks_api_key = self._get_api_key()
return Fireworks(api_key=fireworks_api_key)
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -174,7 +196,7 @@ class FireworksInferenceAdapter(
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
@ -235,17 +257,19 @@ class FireworksInferenceAdapter(
if isinstance(request, ChatCompletionRequest):
if media_present:
input_dict["messages"] = [
await convert_message_to_dict(m) for m in request.messages
await convert_message_to_openai_dict(m) for m in request.messages
]
else:
input_dict["prompt"] = chat_completion_request_to_prompt(
input_dict["prompt"] = await chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
)
else:
assert (
not media_present
), "Fireworks does not support media for Completion requests"
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
input_dict["prompt"] = await completion_request_to_prompt(
request, self.formatter
)
# Fireworks always prepends with BOS
if "prompt" in input_dict:
@ -262,6 +286,21 @@ class FireworksInferenceAdapter(
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
kwargs = {}
if model.metadata.get("embedding_dimensions"):
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
assert all(
not content_has_media(content) for content in contents
), "Fireworks does not support media for embeddings"
response = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -0,0 +1,26 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from llama_stack.apis.inference import Inference
from .config import GroqConfig
class GroqProviderDataValidator(BaseModel):
groq_api_key: str
async def get_adapter_impl(config: GroqConfig, _deps) -> Inference:
# import dynamically so the import is used only when it is needed
from .groq import GroqInferenceAdapter
if not isinstance(config, GroqConfig):
raise RuntimeError(f"Unexpected config type: {type(config)}")
adapter = GroqInferenceAdapter(config)
return adapter

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class GroqConfig(BaseModel):
api_key: Optional[str] = Field(
# The Groq client library loads the GROQ_API_KEY environment variable by default
default=None,
description="The Groq API key",
)

View file

@ -0,0 +1,159 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import warnings
from typing import AsyncIterator, List, Optional, Union
import groq
from groq import Groq
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import ToolDefinition, ToolPromptFormat
from llama_models.sku_list import CoreModelId
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
InterleavedContent,
LogProbConfig,
Message,
ResponseFormat,
ToolChoice,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
build_model_alias_with_just_provider_model_id,
ModelRegistryHelper,
)
from .groq_utils import (
convert_chat_completion_request,
convert_chat_completion_response,
convert_chat_completion_response_stream,
)
_MODEL_ALIASES = [
build_model_alias(
"llama3-8b-8192",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama-3.1-8b-instant",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"llama3-70b-8192",
CoreModelId.llama3_70b_instruct.value,
),
build_model_alias(
"llama-3.3-70b-versatile",
CoreModelId.llama3_3_70b_instruct.value,
),
# Groq only contains a preview version for llama-3.2-3b
# Preview models aren't recommended for production use, but we include this one
# to pass the test fixture
# TODO(aidand): Replace this with a stable model once Groq supports it
build_model_alias(
"llama-3.2-3b-preview",
CoreModelId.llama3_2_3b_instruct.value,
),
]
class GroqInferenceAdapter(Inference, ModelRegistryHelper, NeedsRequestProviderData):
_config: GroqConfig
def __init__(self, config: GroqConfig):
ModelRegistryHelper.__init__(self, model_aliases=_MODEL_ALIASES)
self._config = config
def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
# Groq doesn't support non-chat completion as of time of writing
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
model_id = self.get_provider_model_id(model_id)
if model_id == "llama-3.2-3b-preview":
warnings.warn(
"Groq only contains a preview version for llama-3.2-3b-instruct. "
"Preview models aren't recommended for production use. "
"They can be discontinued on short notice."
)
request = convert_chat_completion_request(
request=ChatCompletionRequest(
model=model_id,
messages=messages,
sampling_params=sampling_params,
response_format=response_format,
tools=tools,
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
)
try:
response = self._get_client().chat.completions.create(**request)
except groq.BadRequestError as e:
if e.body.get("error", {}).get("code") == "tool_use_failed":
# For smaller models, Groq may fail to call a tool even when the request is well formed
raise ValueError(
"Groq failed to call a tool", e.body.get("error", {})
) from e
else:
raise e
if stream:
return convert_chat_completion_response_stream(response)
else:
return convert_chat_completion_response(response)
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
def _get_client(self) -> Groq:
if self._config.api_key is not None:
return Groq(api_key=self._config.api_key)
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.groq_api_key:
raise ValueError(
'Pass Groq API Key in the header X-LlamaStack-Provider-Data as { "groq_api_key": "<your api key>" }'
)
return Groq(api_key=provider_data.groq_api_key)

View file

@ -0,0 +1,241 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import warnings
from typing import AsyncGenerator, Literal
from groq import Stream
from groq.types.chat.chat_completion import ChatCompletion
from groq.types.chat.chat_completion_assistant_message_param import (
ChatCompletionAssistantMessageParam,
)
from groq.types.chat.chat_completion_chunk import ChatCompletionChunk
from groq.types.chat.chat_completion_message_param import ChatCompletionMessageParam
from groq.types.chat.chat_completion_message_tool_call import (
ChatCompletionMessageToolCall,
)
from groq.types.chat.chat_completion_system_message_param import (
ChatCompletionSystemMessageParam,
)
from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
from groq.types.chat.chat_completion_user_message_param import (
ChatCompletionUserMessageParam,
)
from groq.types.chat.completion_create_params import CompletionCreateParams
from groq.types.shared.function_definition import FunctionDefinition
from llama_models.llama3.api.datatypes import ToolParamDefinition
from llama_stack.apis.common.content_types import (
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
Message,
StopReason,
ToolCall,
ToolDefinition,
ToolPromptFormat,
)
def convert_chat_completion_request(
request: ChatCompletionRequest,
) -> CompletionCreateParams:
"""
Convert a ChatCompletionRequest to a Groq API-compatible dictionary.
Warns client if request contains unsupported features.
"""
if request.logprobs:
# Groq doesn't support logprobs at the time of writing
warnings.warn("logprobs are not supported yet")
if request.response_format:
# Groq's JSON mode is beta at the time of writing
warnings.warn("response_format is not supported yet")
if request.sampling_params.repetition_penalty != 1.0:
# groq supports frequency_penalty, but frequency_penalty and sampling_params.repetition_penalty
# seem to have different semantics
# frequency_penalty defaults to 0 is a float between -2.0 and 2.0
# repetition_penalty defaults to 1 and is often set somewhere between 1.0 and 2.0
# so we exclude it for now
warnings.warn("repetition_penalty is not supported")
if request.tool_prompt_format != ToolPromptFormat.json:
warnings.warn("tool_prompt_format is not used by Groq. Ignoring.")
return CompletionCreateParams(
model=request.model,
messages=[_convert_message(message) for message in request.messages],
logprobs=None,
frequency_penalty=None,
stream=request.stream,
max_tokens=request.sampling_params.max_tokens or None,
temperature=request.sampling_params.temperature,
top_p=request.sampling_params.top_p,
tools=[_convert_groq_tool_definition(tool) for tool in request.tools or []],
tool_choice=request.tool_choice.value if request.tool_choice else None,
)
def _convert_message(message: Message) -> ChatCompletionMessageParam:
if message.role == "system":
return ChatCompletionSystemMessageParam(role="system", content=message.content)
elif message.role == "user":
return ChatCompletionUserMessageParam(role="user", content=message.content)
elif message.role == "assistant":
return ChatCompletionAssistantMessageParam(
role="assistant", content=message.content
)
else:
raise ValueError(f"Invalid message role: {message.role}")
def _convert_groq_tool_definition(tool_definition: ToolDefinition) -> dict:
# Groq requires a description for function tools
if tool_definition.description is None:
raise AssertionError("tool_definition.description is required")
tool_parameters = tool_definition.parameters or {}
return ChatCompletionToolParam(
type="function",
function=FunctionDefinition(
name=tool_definition.tool_name,
description=tool_definition.description,
parameters={
key: _convert_groq_tool_parameter(param)
for key, param in tool_parameters.items()
},
),
)
def _convert_groq_tool_parameter(tool_parameter: ToolParamDefinition) -> dict:
param = {
"type": tool_parameter.param_type,
}
if tool_parameter.description is not None:
param["description"] = tool_parameter.description
if tool_parameter.required is not None:
param["required"] = tool_parameter.required
if tool_parameter.default is not None:
param["default"] = tool_parameter.default
return param
def convert_chat_completion_response(
response: ChatCompletion,
) -> ChatCompletionResponse:
# groq only supports n=1 at time of writing, so there is only one choice
choice = response.choices[0]
if choice.finish_reason == "tool_calls":
tool_calls = [
_convert_groq_tool_call(tool_call)
for tool_call in choice.message.tool_calls
]
return ChatCompletionResponse(
completion_message=CompletionMessage(
tool_calls=tool_calls,
stop_reason=StopReason.end_of_message,
# Content is not optional
content="",
),
logprobs=None,
)
else:
return ChatCompletionResponse(
completion_message=CompletionMessage(
content=choice.message.content,
stop_reason=_map_finish_reason_to_stop_reason(choice.finish_reason),
),
)
def _map_finish_reason_to_stop_reason(
finish_reason: Literal["stop", "length", "tool_calls"],
) -> StopReason:
"""
Convert a Groq chat completion finish_reason to a StopReason.
finish_reason: Literal["stop", "length", "tool_calls"]
- stop -> model hit a natural stop point or a provided stop sequence
- length -> maximum number of tokens specified in the request was reached
- tool_calls -> model called a tool
"""
if finish_reason == "stop":
return StopReason.end_of_turn
elif finish_reason == "length":
return StopReason.out_of_tokens
elif finish_reason == "tool_calls":
return StopReason.end_of_message
else:
raise ValueError(f"Invalid finish reason: {finish_reason}")
async def convert_chat_completion_response_stream(
stream: Stream[ChatCompletionChunk],
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
event_type = ChatCompletionResponseEventType.start
for chunk in stream:
choice = chunk.choices[0]
if choice.finish_reason:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta=TextDelta(text=choice.delta.content or ""),
logprobs=None,
stop_reason=_map_finish_reason_to_stop_reason(choice.finish_reason),
)
)
elif choice.delta.tool_calls:
# We assume there is only one tool call per chunk, but emit a warning in case we're wrong
if len(choice.delta.tool_calls) > 1:
warnings.warn(
"Groq returned multiple tool calls in one chunk. Using the first one, ignoring the rest."
)
# We assume Groq produces fully formed tool calls for each chunk
tool_call = _convert_groq_tool_call(choice.delta.tool_calls[0])
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=event_type,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.succeeded,
),
)
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=event_type,
delta=TextDelta(text=choice.delta.content or ""),
logprobs=None,
)
)
event_type = ChatCompletionResponseEventType.progress
def _convert_groq_tool_call(tool_call: ChatCompletionMessageToolCall) -> ToolCall:
return ToolCall(
call_id=tool_call.id,
tool_name=tool_call.function.name,
# Note that Groq may return a string that is not valid JSON here
# So this may raise a 500 error. Going to leave this as is to see
# how big of an issue this is and what we can do about it.
arguments=json.loads(tool_call.function.arguments),
)

View file

@ -8,7 +8,7 @@ import os
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
@json_schema_type
@ -40,7 +40,7 @@ class NVIDIAConfig(BaseModel):
),
description="A base url for accessing the NVIDIA NIM",
)
api_key: Optional[str] = Field(
api_key: Optional[SecretStr] = Field(
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
description="The NVIDIA API key, only needed of using the hosted service",
)

View file

@ -8,13 +8,7 @@ import warnings
from typing import AsyncIterator, List, Optional, Union
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import (
InterleavedTextMedia,
Message,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_models.llama3.api.datatypes import ToolDefinition, ToolPromptFormat
from llama_models.sku_list import CoreModelId
from openai import APIConnectionError, AsyncOpenAI
@ -22,23 +16,31 @@ from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
InterleavedContent,
LogProbConfig,
Message,
ResponseFormat,
ToolChoice,
)
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
from . import NVIDIAConfig
from .openai_utils import (
convert_chat_completion_request,
convert_completion_request,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
convert_openai_completion_choice,
convert_openai_completion_stream,
)
from .utils import _is_nvidia_hosted, check_health
@ -111,25 +113,57 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
# make sure the client lives longer than any async calls
self._client = AsyncOpenAI(
base_url=f"{self._config.url}/v1",
api_key=self._config.api_key or "NO KEY",
api_key=(
self._config.api_key.get_secret_value()
if self._config.api_key
else "NO KEY"
),
timeout=self._config.timeout,
)
def completion(
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
raise NotImplementedError()
if content_has_media(content):
raise NotImplementedError("Media is not supported")
await check_health(self._config) # this raises errors
request = convert_completion_request(
request=CompletionRequest(
model=self.get_provider_model_id(model_id),
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
),
n=1,
)
try:
response = await self._client.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(
f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}"
) from e
if stream:
return convert_openai_completion_stream(response)
else:
# we pass n=1 to get only one completion
return convert_openai_completion_choice(response.choices[0])
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
@ -141,9 +175,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[
ToolPromptFormat
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[

View file

@ -10,14 +10,11 @@ from typing import Any, AsyncGenerator, Dict, Generator, List, Optional
from llama_models.llama3.api.datatypes import (
BuiltinTool,
CompletionMessage,
StopReason,
TokenLogProbs,
ToolCall,
ToolDefinition,
)
from openai import AsyncStream
from openai.types.chat import (
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
ChatCompletionChunk as OpenAIChatCompletionChunk,
@ -31,22 +28,31 @@ from openai.types.chat.chat_completion import (
Choice as OpenAIChoice,
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
)
from openai.types.chat.chat_completion_message_tool_call_param import (
Function as OpenAIFunction,
)
from openai.types.completion import Completion as OpenAICompletion
from openai.types.completion_choice import Logprobs as OpenAICompletionLogprobs
from llama_stack.apis.common.content_types import (
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
JsonSchemaResponseFormat,
Message,
SystemMessage,
ToolCallDelta,
ToolCallParseStatus,
TokenLogProbs,
ToolResponseMessage,
UserMessage,
)
@ -141,7 +147,7 @@ def _convert_message(message: Message | Dict) -> OpenAIChatCompletionMessage:
message = UserMessage(**message)
elif message["role"] == "assistant":
message = CompletionMessage(**message)
elif message["role"] == "ipython":
elif message["role"] == "tool":
message = ToolResponseMessage(**message)
elif message["role"] == "system":
message = SystemMessage(**message)
@ -429,69 +435,6 @@ async def convert_openai_chat_completion_stream(
"""
Convert a stream of OpenAI chat completion chunks into a stream
of ChatCompletionResponseStreamChunk.
OpenAI ChatCompletionChunk:
choices: List[Choice]
OpenAI Choice: # different from the non-streamed Choice
delta: ChoiceDelta
finish_reason: Optional[Literal["stop", "length", "tool_calls", "content_filter", "function_call"]]
logprobs: Optional[ChoiceLogprobs]
OpenAI ChoiceDelta:
content: Optional[str]
role: Optional[Literal["system", "user", "assistant", "tool"]]
tool_calls: Optional[List[ChoiceDeltaToolCall]]
OpenAI ChoiceDeltaToolCall:
index: int
id: Optional[str]
function: Optional[ChoiceDeltaToolCallFunction]
type: Optional[Literal["function"]]
OpenAI ChoiceDeltaToolCallFunction:
name: Optional[str]
arguments: Optional[str]
->
ChatCompletionResponseStreamChunk:
event: ChatCompletionResponseEvent
ChatCompletionResponseEvent:
event_type: ChatCompletionResponseEventType
delta: Union[str, ToolCallDelta]
logprobs: Optional[List[TokenLogProbs]]
stop_reason: Optional[StopReason]
ChatCompletionResponseEventType:
start = "start"
progress = "progress"
complete = "complete"
ToolCallDelta:
content: Union[str, ToolCall]
parse_status: ToolCallParseStatus
ToolCall:
call_id: str
tool_name: str
arguments: str
ToolCallParseStatus:
started = "started"
in_progress = "in_progress"
failure = "failure"
success = "success"
TokenLogProbs:
logprobs_by_token: Dict[str, float]
- token, logprob
StopReason:
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
# generate a stream of ChatCompletionResponseEventType: start -> progress -> progress -> ...
@ -540,7 +483,7 @@ async def convert_openai_chat_completion_stream(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=next(event_type),
delta=choice.delta.content,
delta=TextDelta(text=choice.delta.content),
logprobs=_convert_openai_logprobs(choice.logprobs),
)
)
@ -558,7 +501,7 @@ async def convert_openai_chat_completion_stream(
event_type=next(event_type),
delta=ToolCallDelta(
content=_convert_openai_tool_calls(choice.delta.tool_calls)[0],
parse_status=ToolCallParseStatus.success,
parse_status=ToolCallParseStatus.succeeded,
),
logprobs=_convert_openai_logprobs(choice.logprobs),
)
@ -567,7 +510,7 @@ async def convert_openai_chat_completion_stream(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=next(event_type),
delta=choice.delta.content or "", # content is not optional
delta=TextDelta(text=choice.delta.content or ""),
logprobs=_convert_openai_logprobs(choice.logprobs),
)
)
@ -575,7 +518,114 @@ async def convert_openai_chat_completion_stream(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
delta=TextDelta(text=""),
stop_reason=stop_reason,
)
)
def convert_completion_request(
request: CompletionRequest,
n: int = 1,
) -> dict:
"""
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
"""
# model -> model
# prompt -> prompt
# sampling_params TODO(mattf): review strategy
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
# strategy=top_k -> nvext.top_k = top_k
# temperature -> temperature
# top_p -> top_p
# top_k -> nvext.top_k
# max_tokens -> max_tokens
# repetition_penalty -> nvext.repetition_penalty
# response_format -> nvext.guided_json
# stream -> stream
# logprobs.top_k -> logprobs
nvext = {}
payload: Dict[str, Any] = dict(
model=request.model,
prompt=request.content,
stream=request.stream,
extra_body=dict(nvext=nvext),
extra_headers={
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
},
n=n,
)
if request.response_format:
# this is not openai compliant, it is a nim extension
nvext.update(guided_json=request.response_format.json_schema)
if request.logprobs:
payload.update(logprobs=request.logprobs.top_k)
if request.sampling_params:
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
if request.sampling_params.max_tokens:
payload.update(max_tokens=request.sampling_params.max_tokens)
if request.sampling_params.strategy == "top_p":
nvext.update(top_k=-1)
payload.update(top_p=request.sampling_params.top_p)
elif request.sampling_params.strategy == "top_k":
if (
request.sampling_params.top_k != -1
and request.sampling_params.top_k < 1
):
warnings.warn("top_k must be -1 or >= 1")
nvext.update(top_k=request.sampling_params.top_k)
elif request.sampling_params.strategy == "greedy":
nvext.update(top_k=-1)
payload.update(temperature=request.sampling_params.temperature)
return payload
def _convert_openai_completion_logprobs(
logprobs: Optional[OpenAICompletionLogprobs],
) -> Optional[List[TokenLogProbs]]:
"""
Convert an OpenAI CompletionLogprobs into a list of TokenLogProbs.
"""
if not logprobs:
return None
return [
TokenLogProbs(logprobs_by_token=logprobs) for logprobs in logprobs.top_logprobs
]
def convert_openai_completion_choice(
choice: OpenAIChoice,
) -> CompletionResponse:
"""
Convert an OpenAI Completion Choice into a CompletionResponse.
"""
return CompletionResponse(
content=choice.text,
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
)
async def convert_openai_completion_stream(
stream: AsyncStream[OpenAICompletion],
) -> AsyncGenerator[CompletionResponse, None]:
"""
Convert a stream of OpenAI Completions into a stream
of ChatCompletionResponseStreamChunks.
"""
async for chunk in stream:
choice = chunk.choices[0]
yield CompletionResponseStreamChunk(
delta=TextDelta(text=choice.text),
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
)

View file

@ -5,25 +5,40 @@
# the root directory of this source tree.
import logging
from typing import AsyncGenerator
from typing import AsyncGenerator, List, Optional, Union
import httpx
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from ollama import AsyncClient
from llama_stack.apis.common.content_types import (
ImageContentItem,
InterleavedContent,
TextContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
build_model_alias_with_just_provider_model_id,
ModelRegistryHelper,
)
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
OpenAICompatCompletionChoice,
@ -36,7 +51,9 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
convert_image_media_to_url,
content_has_media,
convert_image_content_to_url,
interleaved_content_as_str,
request_has_media,
)
@ -88,7 +105,7 @@ model_aliases = [
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama3.2-vision",
"llama3.2-vision:latest",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias(
@ -99,6 +116,10 @@ model_aliases = [
"llama3.2-vision:90b",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_model_alias(
"llama3.3:70b",
CoreModelId.llama3_3_70b_instruct.value,
),
# The Llama Guard models don't have their full fp16 versions
# so we are going to alias their default version to the canonical SKU
build_model_alias(
@ -140,7 +161,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -199,7 +220,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
@ -213,6 +234,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
response_format=response_format,
)
if stream:
return self._stream_chat_completion(request)
@ -233,7 +255,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
if isinstance(request, ChatCompletionRequest):
if media_present:
contents = [
await convert_message_to_dict_for_ollama(m)
await convert_message_to_openai_dict_for_ollama(m)
for m in request.messages
]
# flatten the list of lists
@ -242,7 +264,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
]
else:
input_dict["raw"] = True
input_dict["prompt"] = chat_completion_request_to_prompt(
input_dict["prompt"] = await chat_completion_request_to_prompt(
request,
self.register_helper.get_llama_model(request.model),
self.formatter,
@ -251,9 +273,19 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
assert (
not media_present
), "Ollama does not support media for Completion requests"
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
input_dict["prompt"] = await completion_request_to_prompt(
request, self.formatter
)
input_dict["raw"] = True
if fmt := request.response_format:
if fmt.type == "json_schema":
input_dict["format"] = fmt.json_schema
elif fmt.type == "grammar":
raise NotImplementedError("Grammar response format is not supported")
else:
raise ValueError(f"Unknown response format type: {fmt.type}")
return {
"model": request.model,
**input_dict,
@ -269,7 +301,6 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
r = await self.client.chat(**params)
else:
r = await self.client.generate(**params)
assert isinstance(r, dict)
if "message" in r:
choice = OpenAICompatCompletionChoice(
@ -320,11 +351,32 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
assert all(
not content_has_media(content) for content in contents
), "Ollama does not support media for embeddings"
response = await self.client.embed(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = response["embeddings"]
return EmbeddingsResponse(embeddings=embeddings)
async def register_model(self, model: Model) -> Model:
# ollama does not have embedding models running. Check if the model is in list of available models.
if model.model_type == ModelType.embedding:
response = await self.client.list()
available_models = [m["model"] for m in response["models"]]
if model.provider_resource_id not in available_models:
raise ValueError(
f"Model '{model.provider_resource_id}' is not available in Ollama. "
f"Available models: {', '.join(available_models)}"
)
return model
model = await self.register_helper.register_model(model)
models = await self.client.ps()
available_models = [m["model"] for m in models["models"]]
@ -337,21 +389,23 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
return model
async def convert_message_to_dict_for_ollama(message: Message) -> List[dict]:
async def convert_message_to_openai_dict_for_ollama(message: Message) -> List[dict]:
async def _convert_content(content) -> dict:
if isinstance(content, ImageMedia):
if isinstance(content, ImageContentItem):
return {
"role": message.role,
"images": [
await convert_image_media_to_url(
await convert_image_content_to_url(
content, download=True, include_format=False
)
],
}
else:
text = content.text if isinstance(content, TextContentItem) else content
assert isinstance(text, str)
return {
"role": message.role,
"content": content,
"content": text,
}
if isinstance(message.content, list):

View file

@ -4,12 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import Inference
from llama_stack.apis.models import Model
from .config import SampleConfig
from llama_stack.apis.inference import * # noqa: F403
class SampleInferenceImpl(Inference):
def __init__(self, config: SampleConfig):
self.config = config

View file

@ -7,7 +7,7 @@
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
@json_schema_type
@ -15,7 +15,7 @@ class TGIImplConfig(BaseModel):
url: str = Field(
description="The URL for the TGI serving endpoint",
)
api_token: Optional[str] = Field(
api_token: Optional[SecretStr] = Field(
default=None,
description="A bearer token if your TGI endpoint is protected.",
)
@ -32,7 +32,7 @@ class InferenceEndpointImplConfig(BaseModel):
endpoint_name: str = Field(
description="The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided.",
)
api_token: Optional[str] = Field(
api_token: Optional[SecretStr] = Field(
default=None,
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)
@ -55,7 +55,7 @@ class InferenceAPIImplConfig(BaseModel):
huggingface_repo: str = Field(
description="The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct')",
)
api_token: Optional[str] = Field(
api_token: Optional[SecretStr] = Field(
default=None,
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)

View file

@ -13,15 +13,28 @@ from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import all_registered_models
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.models import * # noqa: F403
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
ResponseFormatType,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
OpenAICompatCompletionChoice,
@ -83,7 +96,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -130,8 +143,8 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
return options
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
prompt, input_tokens = completion_request_to_prompt_model_input_info(
async def _get_params_for_completion(self, request: CompletionRequest) -> dict:
prompt, input_tokens = await completion_request_to_prompt_model_input_info(
request, self.formatter
)
@ -147,7 +160,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = self._get_params_for_completion(request)
params = await self._get_params_for_completion(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.text_generation(**params)
@ -169,7 +182,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = self._get_params_for_completion(request)
params = await self._get_params_for_completion(request)
r = await self.client.text_generation(**params)
choice = OpenAICompatCompletionChoice(
@ -190,7 +203,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
@ -216,7 +229,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
params = self._get_params(request)
params = await self._get_params(request)
r = await self.client.text_generation(**params)
choice = OpenAICompatCompletionChoice(
@ -231,7 +244,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator:
params = self._get_params(request)
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.text_generation(**params)
@ -249,8 +262,8 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
):
yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict:
prompt, input_tokens = chat_completion_request_to_model_input_info(
async def _get_params(self, request: ChatCompletionRequest) -> dict:
prompt, input_tokens = await chat_completion_request_to_model_input_info(
request, self.register_helper.get_llama_model(request.model), self.formatter
)
return dict(
@ -267,7 +280,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
@ -275,7 +288,9 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
class TGIAdapter(_HfAdapter):
async def initialize(self, config: TGIImplConfig) -> None:
log.info(f"Initializing TGI client with url={config.url}")
self.client = AsyncInferenceClient(model=config.url, token=config.api_token)
self.client = AsyncInferenceClient(
model=config.url, token=config.api_token.get_secret_value()
)
endpoint_info = await self.client.get_endpoint_info()
self.max_tokens = endpoint_info["max_total_tokens"]
self.model_id = endpoint_info["model_id"]
@ -284,7 +299,7 @@ class TGIAdapter(_HfAdapter):
class InferenceAPIAdapter(_HfAdapter):
async def initialize(self, config: InferenceAPIImplConfig) -> None:
self.client = AsyncInferenceClient(
model=config.huggingface_repo, token=config.api_token
model=config.huggingface_repo, token=config.api_token.get_secret_value()
)
endpoint_info = await self.client.get_endpoint_info()
self.max_tokens = endpoint_info["max_total_tokens"]
@ -294,7 +309,7 @@ class InferenceAPIAdapter(_HfAdapter):
class InferenceEndpointAdapter(_HfAdapter):
async def initialize(self, config: InferenceEndpointImplConfig) -> None:
# Get the inference endpoint details
api = HfApi(token=config.api_token)
api = HfApi(token=config.api_token.get_secret_value())
endpoint = api.get_inference_endpoint(config.endpoint_name)
# Wait for the endpoint to be ready (if not already)

View file

@ -7,7 +7,7 @@
from typing import Any, Dict, Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
@json_schema_type
@ -16,7 +16,7 @@ class TogetherImplConfig(BaseModel):
default="https://api.together.xyz/v1",
description="The URL for the Together AI server",
)
api_key: Optional[str] = Field(
api_key: Optional[SecretStr] = Field(
default=None,
description="The Together AI API Key",
)

View file

@ -4,24 +4,36 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from typing import AsyncGenerator, List, Optional, Union
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from together import Together
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
ResponseFormatType,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -31,13 +43,13 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
convert_message_to_dict,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
from .config import TogetherImplConfig
MODEL_ALIASES = [
build_model_alias(
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
@ -63,6 +75,10 @@ MODEL_ALIASES = [
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_model_alias(
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
CoreModelId.llama3_3_70b_instruct.value,
),
build_model_alias(
"meta-llama/Meta-Llama-Guard-3-8B",
CoreModelId.llama_guard_3_8b.value,
@ -91,7 +107,7 @@ class TogetherInferenceAdapter(
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
@ -114,12 +130,12 @@ class TogetherInferenceAdapter(
def _get_client(self) -> Together:
together_api_key = None
if self.config.api_key is not None:
together_api_key = self.config.api_key
together_api_key = self.config.api_key.get_secret_value()
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-ProviderData as { "together_api_key": <your api key>}'
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
return Together(api_key=together_api_key)
@ -168,7 +184,7 @@ class TogetherInferenceAdapter(
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
@ -229,17 +245,19 @@ class TogetherInferenceAdapter(
if isinstance(request, ChatCompletionRequest):
if media_present:
input_dict["messages"] = [
await convert_message_to_dict(m) for m in request.messages
await convert_message_to_openai_dict(m) for m in request.messages
]
else:
input_dict["prompt"] = chat_completion_request_to_prompt(
input_dict["prompt"] = await chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
)
else:
assert (
not media_present
), "Together does not support media for Completion requests"
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
input_dict["prompt"] = await completion_request_to_prompt(
request, self.formatter
)
return {
"model": request.model,
@ -251,6 +269,15 @@ class TogetherInferenceAdapter(
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
assert all(
not content_has_media(content) for content in contents
), "Together does not support media for embeddings"
r = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = [item.embedding for item in r.data]
return EmbeddingsResponse(embeddings=embeddings)

View file

@ -5,23 +5,39 @@
# the root directory of this source tree.
import logging
from typing import AsyncGenerator
from typing import AsyncGenerator, List, Optional, Union
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import all_registered_models
from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
ResponseFormatType,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -29,13 +45,13 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
convert_message_to_dict,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
from .config import VLLMInferenceAdapterConfig
log = logging.getLogger(__name__)
@ -70,13 +86,13 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
raise NotImplementedError()
raise NotImplementedError("Completion not implemented for vLLM")
async def chat_completion(
self,
@ -86,7 +102,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
@ -100,6 +116,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
response_format=response_format,
)
if stream:
return self._stream_chat_completion(request, self.client)
@ -161,11 +178,11 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
if media_present:
# vllm does not seem to work well with image urls, so we download the images
input_dict["messages"] = [
await convert_message_to_dict(m, download=True)
await convert_message_to_openai_dict(m, download=True)
for m in request.messages
]
else:
input_dict["prompt"] = chat_completion_request_to_prompt(
input_dict["prompt"] = await chat_completion_request_to_prompt(
request,
self.register_helper.get_llama_model(request.model),
self.formatter,
@ -173,13 +190,22 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
else:
assert (
not media_present
), "Together does not support media for Completion requests"
input_dict["prompt"] = completion_request_to_prompt(
), "vLLM does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(
request,
self.register_helper.get_llama_model(request.model),
self.formatter,
)
if fmt := request.response_format:
if fmt.type == ResponseFormatType.json_schema.value:
input_dict["extra_body"] = {
"guided_json": request.response_format.json_schema
}
elif fmt.type == ResponseFormatType.grammar.value:
raise NotImplementedError("Grammar response format not supported yet")
else:
raise ValueError(f"Unknown response format {fmt.type}")
return {
"model": request.model,
**input_dict,
@ -190,6 +216,22 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
model = await self.model_store.get_model(model_id)
kwargs = {}
assert model.model_type == ModelType.embedding
assert model.metadata.get("embedding_dimensions")
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
assert all(
not content_has_media(content) for content in contents
), "VLLM does not support media for embeddings"
response = self.client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)