fix: Fix open benchmark template (#1496)

## What does this PR do?
Delete the open_benchmark template which was generated by the auto
codegen by accident
This commit is contained in:
Botao Chen 2025-03-07 14:49:10 -08:00 committed by GitHub
parent d63e798f6d
commit 89e449c2cb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 0 additions and 622 deletions

View file

@ -453,42 +453,6 @@
"transformers",
"uvicorn"
],
"open_benchmark": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"fastapi",
"fire",
"httpx",
"litellm",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pymongo",
"pypdf",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"sqlite-vec",
"together",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
],
"remote-vllm": [
"aiosqlite",
"autoevals",

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .open_benchmark import get_distribution_template # noqa: F401

View file

@ -1,178 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Tuple
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
from llama_stack.providers.remote.inference.anthropic.models import MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
from llama_stack.providers.remote.inference.gemini.models import MODEL_ENTRIES as GEMINI_MODEL_ENTRIES
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.remote.inference.groq.models import MODEL_ENTRIES as GROQ_MODEL_ENTRIES
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
from llama_stack.providers.remote.inference.openai.models import MODEL_ENTRIES as OPENAI_MODEL_ENTRIES
from llama_stack.providers.remote.inference.together.config import TogetherImplConfig
from llama_stack.providers.remote.inference.together.models import MODEL_ENTRIES as TOGETHER_MODEL_ENTRIES
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.remote.vector_io.pgvector.config import PGVectorVectorIOConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
def get_inference_providers() -> Tuple[List[Provider], List[ModelInput]]:
# in this template, we allow each API key to be optional
providers = [
(
"openai",
OPENAI_MODEL_ENTRIES,
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:}"),
),
(
"anthropic",
ANTHROPIC_MODEL_ENTRIES,
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:}"),
),
(
"gemini",
GEMINI_MODEL_ENTRIES,
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:}"),
),
(
"groq",
GROQ_MODEL_ENTRIES,
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:}"),
),
(
"together",
TOGETHER_MODEL_ENTRIES,
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:}"),
),
]
inference_providers = []
available_models = {}
for provider_id, model_entries, config in providers:
inference_providers.append(
Provider(
provider_id=provider_id,
provider_type=f"remote::{provider_id}",
config=config,
)
)
available_models[provider_id] = model_entries
return inference_providers, available_models
def get_distribution_template() -> DistributionTemplate:
inference_providers, available_models = get_inference_providers()
providers = {
"inference": ([p.provider_type for p in inference_providers] + ["inline::sentence-transformers"]),
"vector_io": ["inline::sqlite-vec", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
name = "open_benchmark"
vector_io_providers = [
Provider(
provider_id="sqlite-vec",
provider_type="inline::sqlite-vec",
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.ENABLE_CHROMADB+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:}"),
),
Provider(
provider_id="${env.ENABLE_PGVECTOR+pgvector}",
provider_type="remote::pgvector",
config=PGVectorVectorIOConfig.sample_run_config(
db="${env.PGVECTOR_DB:}",
user="${env.PGVECTOR_USER:}",
password="${env.PGVECTOR_PASSWORD:}",
),
),
]
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
]
default_models = get_model_registry(available_models)
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Distribution for running open benchmarks",
container_image=None,
template_path=None,
providers=providers,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": inference_providers,
"vector_io": vector_io_providers,
},
default_models=default_models,
default_tool_groups=default_tool_groups,
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"OPENAI_API_KEY": (
"",
"OpenAI API Key",
),
"GEMINI_API_KEY": (
"",
"Gemini API Key",
),
"GROQ_API_KEY": (
"",
"Groq API Key",
),
"ANTHROPIC_API_KEY": (
"",
"Anthropic API Key",
),
"TOGETHER_API_KEY": (
"",
"Together API Key",
),
},
)

View file

@ -1,37 +0,0 @@
version: '2'
distribution_spec:
description: Distribution for running open benchmarks
providers:
inference:
- remote::openai
- remote::anthropic
- remote::gemini
- remote::groq
- remote::together
- inline::sentence-transformers
vector_io:
- inline::sqlite-vec
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::code-interpreter
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda

View file

@ -1,364 +0,0 @@
version: '2'
image_name: open_benchmark
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: openai
provider_type: remote::openai
config:
api_key: ${env.OPENAI_API_KEY:}
- provider_id: anthropic
provider_type: remote::anthropic
config:
api_key: ${env.ANTHROPIC_API_KEY:}
- provider_id: gemini
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:}
- provider_id: groq
provider_type: remote::groq
config:
url: https://api.groq.com
api_key: ${env.GROQ_API_KEY:}
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY}
vector_io:
- provider_id: sqlite-vec
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/open_benchmark}/sqlite_vec.db
- provider_id: ${env.ENABLE_CHROMADB+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:}
- provider_id: ${env.ENABLE_PGVECTOR+pgvector}
provider_type: remote::pgvector
config:
host: ${env.PGVECTOR_HOST:localhost}
port: ${env.PGVECTOR_PORT:5432}
db: ${env.PGVECTOR_DB:}
user: ${env.PGVECTOR_USER:}
password: ${env.PGVECTOR_PASSWORD:}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/open_benchmark}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/open_benchmark/trace_store.db}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config: {}
- provider_id: localfs
provider_type: inline::localfs
config: {}
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:}
max_results: 3
- provider_id: code-interpreter
provider_type: inline::code-interpreter
config: {}
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/open_benchmark}/registry.db
models:
- metadata: {}
model_id: openai/gpt-4o
provider_id: openai
provider_model_id: openai/gpt-4o
model_type: llm
- metadata: {}
model_id: openai/gpt-4o-mini
provider_id: openai
provider_model_id: openai/gpt-4o-mini
model_type: llm
- metadata: {}
model_id: openai/chatgpt-4o-latest
provider_id: openai
provider_model_id: openai/chatgpt-4o-latest
model_type: llm
- metadata:
embedding_dimension: 1536
context_length: 8192
model_id: openai/text-embedding-3-small
provider_id: openai
provider_model_id: openai/text-embedding-3-small
model_type: embedding
- metadata:
embedding_dimension: 3072
context_length: 8192
model_id: openai/text-embedding-3-large
provider_id: openai
provider_model_id: openai/text-embedding-3-large
model_type: embedding
- metadata: {}
model_id: anthropic/claude-3-5-sonnet-latest
provider_id: anthropic
provider_model_id: anthropic/claude-3-5-sonnet-latest
model_type: llm
- metadata: {}
model_id: anthropic/claude-3-7-sonnet-latest
provider_id: anthropic
provider_model_id: anthropic/claude-3-7-sonnet-latest
model_type: llm
- metadata: {}
model_id: anthropic/claude-3-5-haiku-latest
provider_id: anthropic
provider_model_id: anthropic/claude-3-5-haiku-latest
model_type: llm
- metadata:
embedding_dimension: 1024
context_length: 32000
model_id: anthropic/voyage-3
provider_id: anthropic
provider_model_id: anthropic/voyage-3
model_type: embedding
- metadata:
embedding_dimension: 512
context_length: 32000
model_id: anthropic/voyage-3-lite
provider_id: anthropic
provider_model_id: anthropic/voyage-3-lite
model_type: embedding
- metadata:
embedding_dimension: 1024
context_length: 32000
model_id: anthropic/voyage-code-3
provider_id: anthropic
provider_model_id: anthropic/voyage-code-3
model_type: embedding
- metadata: {}
model_id: gemini/gemini-1.5-flash
provider_id: gemini
provider_model_id: gemini/gemini-1.5-flash
model_type: llm
- metadata: {}
model_id: gemini/gemini-1.5-pro
provider_id: gemini
provider_model_id: gemini/gemini-1.5-pro
model_type: llm
- metadata:
embedding_dimension: 768
context_length: 2048
model_id: gemini/text-embedding-004
provider_id: gemini
provider_model_id: gemini/text-embedding-004
model_type: embedding
- metadata: {}
model_id: groq/llama3-8b-8192
provider_id: groq
provider_model_id: groq/llama3-8b-8192
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: groq
provider_model_id: groq/llama3-8b-8192
model_type: llm
- metadata: {}
model_id: groq/llama-3.1-8b-instant
provider_id: groq
provider_model_id: groq/llama-3.1-8b-instant
model_type: llm
- metadata: {}
model_id: groq/llama3-70b-8192
provider_id: groq
provider_model_id: groq/llama3-70b-8192
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3-70B-Instruct
provider_id: groq
provider_model_id: groq/llama3-70b-8192
model_type: llm
- metadata: {}
model_id: groq/llama-3.3-70b-versatile
provider_id: groq
provider_model_id: groq/llama-3.3-70b-versatile
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: groq
provider_model_id: groq/llama-3.3-70b-versatile
model_type: llm
- metadata: {}
model_id: groq/llama-3.2-3b-preview
provider_id: groq
provider_model_id: groq/llama-3.2-3b-preview
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct
provider_id: groq
provider_model_id: groq/llama-3.2-3b-preview
model_type: llm
- metadata: {}
model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo
provider_id: together
provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: together
provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo
provider_id: together
provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-70B-Instruct
provider_id: together
provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo
provider_id: together
provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
provider_id: together
provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo
provider_id: together
provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct
provider_id: together
provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo
provider_id: together
provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
provider_id: together
provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo
provider_id: together
provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
provider_id: together
provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo
provider_id: together
provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: together
provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Meta-Llama-Guard-3-8B
provider_id: together
provider_model_id: meta-llama/Meta-Llama-Guard-3-8B
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-Guard-3-8B
provider_id: together
provider_model_id: meta-llama/Meta-Llama-Guard-3-8B
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
provider_id: together
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-Guard-3-11B-Vision
provider_id: together
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
model_type: llm
- metadata:
embedding_dimension: 768
context_length: 8192
model_id: togethercomputer/m2-bert-80M-8k-retrieval
provider_id: together
provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval
model_type: embedding
- metadata:
embedding_dimension: 768
context_length: 32768
model_id: togethercomputer/m2-bert-80M-32k-retrieval
provider_id: together
provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval
model_type: embedding
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
- toolgroup_id: builtin::code_interpreter
provider_id: code-interpreter
server:
port: 8321