mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-31 04:50:01 +00:00
Improve groq OpenAI API compatibility
This doesn't get Groq to 100% on the OpenAI API verification tests, but it does get it to 88.2% when Llama Stack is in the middle, compared to the 61.8% results for using an OpenAI client against Groq directly. The groq provider doesn't use litellm under the covers in its openai_chat_completion endpoint, and instead directly uses an AsyncOpenAI client with some special handling to improve conformance of responses for response_format usage and tool calling. Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
657bb12e85
commit
8a1c0a1008
16 changed files with 418 additions and 45 deletions
|
|
@ -503,15 +503,16 @@ class OpenAISystemMessageParam(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletionToolCallFunction(BaseModel):
|
||||
name: str
|
||||
arguments: str
|
||||
name: Optional[str] = None
|
||||
arguments: Optional[str] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletionToolCall(BaseModel):
|
||||
id: str
|
||||
index: Optional[int] = None
|
||||
id: Optional[str] = None
|
||||
type: Literal["function"] = "function"
|
||||
function: OpenAIChatCompletionToolCallFunction
|
||||
function: Optional[OpenAIChatCompletionToolCallFunction] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -645,22 +646,54 @@ class OpenAITokenLogProb(BaseModel):
|
|||
class OpenAIChoiceLogprobs(BaseModel):
|
||||
"""The log probabilities for the tokens in the message from an OpenAI-compatible chat completion response.
|
||||
|
||||
:content: (Optional) The log probabilities for the tokens in the message
|
||||
:refusal: (Optional) The log probabilities for the tokens in the message
|
||||
:param content: (Optional) The log probabilities for the tokens in the message
|
||||
:param refusal: (Optional) The log probabilities for the tokens in the message
|
||||
"""
|
||||
|
||||
content: Optional[List[OpenAITokenLogProb]] = None
|
||||
refusal: Optional[List[OpenAITokenLogProb]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChoiceDelta(BaseModel):
|
||||
"""A delta from an OpenAI-compatible chat completion streaming response.
|
||||
|
||||
:param content: (Optional) The content of the delta
|
||||
:param refusal: (Optional) The refusal of the delta
|
||||
:param role: (Optional) The role of the delta
|
||||
:param tool_calls: (Optional) The tool calls of the delta
|
||||
"""
|
||||
|
||||
content: Optional[str] = None
|
||||
refusal: Optional[str] = None
|
||||
role: Optional[str] = None
|
||||
tool_calls: Optional[List[OpenAIChatCompletionToolCall]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChunkChoice(BaseModel):
|
||||
"""A chunk choice from an OpenAI-compatible chat completion streaming response.
|
||||
|
||||
:param delta: The delta from the chunk
|
||||
:param finish_reason: The reason the model stopped generating
|
||||
:param index: The index of the choice
|
||||
:param logprobs: (Optional) The log probabilities for the tokens in the message
|
||||
"""
|
||||
|
||||
delta: OpenAIChoiceDelta
|
||||
finish_reason: str
|
||||
index: int
|
||||
logprobs: Optional[OpenAIChoiceLogprobs] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChoice(BaseModel):
|
||||
"""A choice from an OpenAI-compatible chat completion response.
|
||||
|
||||
:param message: The message from the model
|
||||
:param finish_reason: The reason the model stopped generating
|
||||
:index: The index of the choice
|
||||
:logprobs: (Optional) The log probabilities for the tokens in the message
|
||||
:param index: The index of the choice
|
||||
:param logprobs: (Optional) The log probabilities for the tokens in the message
|
||||
"""
|
||||
|
||||
message: OpenAIMessageParam
|
||||
|
|
@ -699,7 +732,7 @@ class OpenAIChatCompletionChunk(BaseModel):
|
|||
"""
|
||||
|
||||
id: str
|
||||
choices: List[OpenAIChoice]
|
||||
choices: List[OpenAIChunkChoice]
|
||||
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
||||
created: int
|
||||
model: str
|
||||
|
|
|
|||
|
|
@ -4,8 +4,24 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, AsyncIterator, Dict, List, Optional, Union
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChoiceDelta,
|
||||
OpenAIChunkChoice,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
OpenAISystemMessageParam,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
prepare_openai_completion_params,
|
||||
)
|
||||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
|
|
@ -21,9 +37,129 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
provider_data_api_key_field="groq_api_key",
|
||||
)
|
||||
self.config = config
|
||||
self._openai_client = None
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
if self._openai_client:
|
||||
await self._openai_client.close()
|
||||
self._openai_client = None
|
||||
|
||||
def _get_openai_client(self) -> AsyncOpenAI:
|
||||
if not self._openai_client:
|
||||
self._openai_client = AsyncOpenAI(
|
||||
base_url=f"{self.config.url}/openai/v1",
|
||||
api_key=self.config.api_key,
|
||||
)
|
||||
return self._openai_client
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Groq does not support json_schema response format, so we need to convert it to json_object
|
||||
if response_format and response_format.type == "json_schema":
|
||||
response_format.type = "json_object"
|
||||
schema = response_format.json_schema.get("schema", {})
|
||||
response_format.json_schema = None
|
||||
json_instructions = f"\nYour response should be a JSON object that matches the following schema: {schema}"
|
||||
if messages and messages[0].role == "system":
|
||||
messages[0].content = messages[0].content + json_instructions
|
||||
else:
|
||||
messages.insert(0, OpenAISystemMessageParam(content=json_instructions))
|
||||
|
||||
# Groq returns a 400 error if tools are provided but none are called
|
||||
# So, set tool_choice to "required" to attempt to force a call
|
||||
if tools and (not tool_choice or tool_choice == "auto"):
|
||||
tool_choice = "required"
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id.replace("groq/", ""),
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
# Groq does not support streaming requests that set response_format
|
||||
fake_stream = False
|
||||
if stream and response_format:
|
||||
params["stream"] = False
|
||||
fake_stream = True
|
||||
|
||||
response = await self._get_openai_client().chat.completions.create(**params)
|
||||
|
||||
if fake_stream:
|
||||
chunk_choices = []
|
||||
for choice in response.choices:
|
||||
delta = OpenAIChoiceDelta(
|
||||
content=choice.message.content,
|
||||
role=choice.message.role,
|
||||
tool_calls=choice.message.tool_calls,
|
||||
)
|
||||
chunk_choice = OpenAIChunkChoice(
|
||||
delta=delta,
|
||||
finish_reason=choice.finish_reason,
|
||||
index=choice.index,
|
||||
logprobs=None,
|
||||
)
|
||||
chunk_choices.append(chunk_choice)
|
||||
chunk = OpenAIChatCompletionChunk(
|
||||
id=response.id,
|
||||
choices=chunk_choices,
|
||||
object="chat.completion.chunk",
|
||||
created=response.created,
|
||||
model=response.model,
|
||||
)
|
||||
|
||||
async def _fake_stream_generator():
|
||||
yield chunk
|
||||
|
||||
return _fake_stream_generator()
|
||||
else:
|
||||
return response
|
||||
|
|
|
|||
|
|
@ -39,8 +39,16 @@ MODEL_ENTRIES = [
|
|||
"groq/llama-4-scout-17b-16e-instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/meta-llama/llama-4-scout-17b-16e-instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/llama-4-maverick-17b-128e-instruct",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/meta-llama/llama-4-maverick-17b-128e-instruct",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -298,7 +298,7 @@ class LiteLLMOpenAIMixin(
|
|||
guided_choice=guided_choice,
|
||||
prompt_logprobs=prompt_logprobs,
|
||||
)
|
||||
return litellm.text_completion(**params)
|
||||
return await litellm.atext_completion(**params)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
|
|
@ -352,7 +352,7 @@ class LiteLLMOpenAIMixin(
|
|||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return litellm.completion(**params)
|
||||
return await litellm.acompletion(**params)
|
||||
|
||||
async def batch_completion(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -1354,14 +1354,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
i = 0
|
||||
async for chunk in response:
|
||||
event = chunk.event
|
||||
if event.stop_reason == StopReason.end_of_turn:
|
||||
finish_reason = "stop"
|
||||
elif event.stop_reason == StopReason.end_of_message:
|
||||
finish_reason = "eos"
|
||||
elif event.stop_reason == StopReason.out_of_tokens:
|
||||
finish_reason = "length"
|
||||
else:
|
||||
finish_reason = None
|
||||
finish_reason = _convert_stop_reason_to_openai_finish_reason(event.stop_reason)
|
||||
|
||||
if isinstance(event.delta, TextDelta):
|
||||
text_delta = event.delta.text
|
||||
|
|
|
|||
|
|
@ -386,6 +386,16 @@ models:
|
|||
provider_id: groq
|
||||
provider_model_id: groq/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/llama-4-maverick-17b-128e-instruct
|
||||
provider_id: groq
|
||||
|
|
@ -396,6 +406,16 @@ models:
|
|||
provider_id: groq
|
||||
provider_model_id: groq/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
|
|
|
|||
|
|
@ -158,6 +158,16 @@ models:
|
|||
provider_id: groq
|
||||
provider_model_id: groq/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/llama-4-maverick-17b-128e-instruct
|
||||
provider_id: groq
|
||||
|
|
@ -168,6 +178,16 @@ models:
|
|||
provider_id: groq
|
||||
provider_model_id: groq/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
|
|
|
|||
|
|
@ -474,6 +474,16 @@ models:
|
|||
provider_id: groq-openai-compat
|
||||
provider_model_id: groq/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
provider_id: groq-openai-compat
|
||||
provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
provider_id: groq-openai-compat
|
||||
provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/llama-4-maverick-17b-128e-instruct
|
||||
provider_id: groq-openai-compat
|
||||
|
|
@ -484,6 +494,16 @@ models:
|
|||
provider_id: groq-openai-compat
|
||||
provider_model_id: groq/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
provider_id: groq-openai-compat
|
||||
provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct
|
||||
provider_id: groq-openai-compat
|
||||
provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: Meta-Llama-3.1-8B-Instruct
|
||||
provider_id: sambanova-openai-compat
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue