mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-13 13:19:57 +00:00
docs: Reformat external provider documentation (#2982)
**Description** This PR adjusts the external providers documentation to align with the new providers format. Splits up sections into the existing external providers and how to create them as well. <img width="1049" height="478" alt="Screenshot 2025-07-31 at 9 48 26 AM" src="https://github.com/user-attachments/assets/f13599cb-2fd1-4e57-8ca9-27b067264e33" /> Open to feedback and adjusting titles
This commit is contained in:
parent
3a574ef23c
commit
8a6c0fb930
4 changed files with 65 additions and 56 deletions
286
docs/source/providers/external/external-providers-guide.md
vendored
Normal file
286
docs/source/providers/external/external-providers-guide.md
vendored
Normal file
|
@ -0,0 +1,286 @@
|
|||
# Creating External Providers
|
||||
|
||||
## Configuration
|
||||
|
||||
To enable external providers, you need to add `module` into your build yaml, allowing Llama Stack to install the required package corresponding to the external provider.
|
||||
|
||||
an example entry in your build.yaml should look like:
|
||||
|
||||
```
|
||||
- provider_type: remote::ramalama
|
||||
module: ramalama_stack
|
||||
```
|
||||
|
||||
Additionally you can configure the `external_providers_dir` in your Llama Stack configuration. This method is in the process of being deprecated in favor of the `module` method. If using this method, the external provider directory should contain your external provider specifications:
|
||||
|
||||
```yaml
|
||||
external_providers_dir: ~/.llama/providers.d/
|
||||
```
|
||||
|
||||
## Directory Structure
|
||||
|
||||
The external providers directory should follow this structure:
|
||||
|
||||
```
|
||||
providers.d/
|
||||
remote/
|
||||
inference/
|
||||
custom_ollama.yaml
|
||||
vllm.yaml
|
||||
vector_io/
|
||||
qdrant.yaml
|
||||
safety/
|
||||
llama-guard.yaml
|
||||
inline/
|
||||
inference/
|
||||
custom_ollama.yaml
|
||||
vllm.yaml
|
||||
vector_io/
|
||||
qdrant.yaml
|
||||
safety/
|
||||
llama-guard.yaml
|
||||
```
|
||||
|
||||
Each YAML file in these directories defines a provider specification for that particular API.
|
||||
|
||||
## Provider Types
|
||||
|
||||
Llama Stack supports two types of external providers:
|
||||
|
||||
1. **Remote Providers**: Providers that communicate with external services (e.g., cloud APIs)
|
||||
2. **Inline Providers**: Providers that run locally within the Llama Stack process
|
||||
|
||||
### Remote Provider Specification
|
||||
|
||||
Remote providers are used when you need to communicate with external services. Here's an example for a custom Ollama provider:
|
||||
|
||||
```yaml
|
||||
adapter:
|
||||
adapter_type: custom_ollama
|
||||
pip_packages:
|
||||
- ollama
|
||||
- aiohttp
|
||||
config_class: llama_stack_ollama_provider.config.OllamaImplConfig
|
||||
module: llama_stack_ollama_provider
|
||||
api_dependencies: []
|
||||
optional_api_dependencies: []
|
||||
```
|
||||
|
||||
#### Adapter Configuration
|
||||
|
||||
The `adapter` section defines how to load and configure the provider:
|
||||
|
||||
- `adapter_type`: A unique identifier for this adapter
|
||||
- `pip_packages`: List of Python packages required by the provider
|
||||
- `config_class`: The full path to the configuration class
|
||||
- `module`: The Python module containing the provider implementation
|
||||
|
||||
### Inline Provider Specification
|
||||
|
||||
Inline providers run locally within the Llama Stack process. Here's an example for a custom vector store provider:
|
||||
|
||||
```yaml
|
||||
module: llama_stack_vector_provider
|
||||
config_class: llama_stack_vector_provider.config.VectorStoreConfig
|
||||
pip_packages:
|
||||
- faiss-cpu
|
||||
- numpy
|
||||
api_dependencies:
|
||||
- inference
|
||||
optional_api_dependencies:
|
||||
- vector_io
|
||||
provider_data_validator: llama_stack_vector_provider.validator.VectorStoreValidator
|
||||
container_image: custom-vector-store:latest # optional
|
||||
```
|
||||
|
||||
#### Inline Provider Fields
|
||||
|
||||
- `module`: The Python module containing the provider implementation
|
||||
- `config_class`: The full path to the configuration class
|
||||
- `pip_packages`: List of Python packages required by the provider
|
||||
- `api_dependencies`: List of Llama Stack APIs that this provider depends on
|
||||
- `optional_api_dependencies`: List of optional Llama Stack APIs that this provider can use
|
||||
- `provider_data_validator`: Optional validator for provider data
|
||||
- `container_image`: Optional container image to use instead of pip packages
|
||||
|
||||
## Required Fields
|
||||
|
||||
### All Providers
|
||||
|
||||
All providers must contain a `get_provider_spec` function in their `provider` module. This is a standardized structure that Llama Stack expects and is necessary for getting things such as the config class. The `get_provider_spec` method returns a structure identical to the `adapter`. An example function may look like:
|
||||
|
||||
```python
|
||||
from llama_stack.providers.datatypes import (
|
||||
ProviderSpec,
|
||||
Api,
|
||||
AdapterSpec,
|
||||
remote_provider_spec,
|
||||
)
|
||||
|
||||
|
||||
def get_provider_spec() -> ProviderSpec:
|
||||
return remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="ramalama",
|
||||
pip_packages=["ramalama>=0.8.5", "pymilvus"],
|
||||
config_class="ramalama_stack.config.RamalamaImplConfig",
|
||||
module="ramalama_stack",
|
||||
),
|
||||
)
|
||||
```
|
||||
|
||||
#### Remote Providers
|
||||
|
||||
Remote providers must expose a `get_adapter_impl()` function in their module that takes two arguments:
|
||||
1. `config`: An instance of the provider's config class
|
||||
2. `deps`: A dictionary of API dependencies
|
||||
|
||||
This function must return an instance of the provider's adapter class that implements the required protocol for the API.
|
||||
|
||||
Example:
|
||||
```python
|
||||
async def get_adapter_impl(
|
||||
config: OllamaImplConfig, deps: Dict[Api, Any]
|
||||
) -> OllamaInferenceAdapter:
|
||||
return OllamaInferenceAdapter(config)
|
||||
```
|
||||
|
||||
#### Inline Providers
|
||||
|
||||
Inline providers must expose a `get_provider_impl()` function in their module that takes two arguments:
|
||||
1. `config`: An instance of the provider's config class
|
||||
2. `deps`: A dictionary of API dependencies
|
||||
|
||||
Example:
|
||||
```python
|
||||
async def get_provider_impl(
|
||||
config: VectorStoreConfig, deps: Dict[Api, Any]
|
||||
) -> VectorStoreImpl:
|
||||
impl = VectorStoreImpl(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
```
|
||||
|
||||
## Dependencies
|
||||
|
||||
The provider package must be installed on the system. For example:
|
||||
|
||||
```bash
|
||||
$ uv pip show llama-stack-ollama-provider
|
||||
Name: llama-stack-ollama-provider
|
||||
Version: 0.1.0
|
||||
Location: /path/to/venv/lib/python3.10/site-packages
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Package Naming**: Use the prefix `llama-stack-provider-` for your provider packages to make them easily identifiable.
|
||||
|
||||
2. **Version Management**: Keep your provider package versioned and compatible with the Llama Stack version you're using.
|
||||
|
||||
3. **Dependencies**: Only include the minimum required dependencies in your provider package.
|
||||
|
||||
4. **Documentation**: Include clear documentation in your provider package about:
|
||||
- Installation requirements
|
||||
- Configuration options
|
||||
- Usage examples
|
||||
- Any limitations or known issues
|
||||
|
||||
5. **Testing**: Include tests in your provider package to ensure it works correctly with Llama Stack.
|
||||
You can refer to the [integration tests
|
||||
guide](https://github.com/meta-llama/llama-stack/blob/main/tests/integration/README.md) for more
|
||||
information. Execute the test for the Provider type you are developing.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
If your external provider isn't being loaded:
|
||||
|
||||
1. Check that `module` points to a published pip package with a top level `provider` module including `get_provider_spec`.
|
||||
1. Check that the `external_providers_dir` path is correct and accessible.
|
||||
2. Verify that the YAML files are properly formatted.
|
||||
3. Ensure all required Python packages are installed.
|
||||
4. Check the Llama Stack server logs for any error messages - turn on debug logging to get more
|
||||
information using `LLAMA_STACK_LOGGING=all=debug`.
|
||||
5. Verify that the provider package is installed in your Python environment if using `external_providers_dir`.
|
||||
|
||||
## Examples
|
||||
|
||||
### Example using `external_providers_dir`: Custom Ollama Provider
|
||||
|
||||
Here's a complete example of creating and using a custom Ollama provider:
|
||||
|
||||
1. First, create the provider package:
|
||||
|
||||
```bash
|
||||
mkdir -p llama-stack-provider-ollama
|
||||
cd llama-stack-provider-ollama
|
||||
git init
|
||||
uv init
|
||||
```
|
||||
|
||||
2. Edit `pyproject.toml`:
|
||||
|
||||
```toml
|
||||
[project]
|
||||
name = "llama-stack-provider-ollama"
|
||||
version = "0.1.0"
|
||||
description = "Ollama provider for Llama Stack"
|
||||
requires-python = ">=3.10"
|
||||
dependencies = ["llama-stack", "pydantic", "ollama", "aiohttp"]
|
||||
```
|
||||
|
||||
3. Create the provider specification:
|
||||
|
||||
```yaml
|
||||
# ~/.llama/providers.d/remote/inference/custom_ollama.yaml
|
||||
adapter:
|
||||
adapter_type: custom_ollama
|
||||
pip_packages: ["ollama", "aiohttp"]
|
||||
config_class: llama_stack_provider_ollama.config.OllamaImplConfig
|
||||
module: llama_stack_provider_ollama
|
||||
api_dependencies: []
|
||||
optional_api_dependencies: []
|
||||
```
|
||||
|
||||
4. Install the provider:
|
||||
|
||||
```bash
|
||||
uv pip install -e .
|
||||
```
|
||||
|
||||
5. Configure Llama Stack to use external providers:
|
||||
|
||||
```yaml
|
||||
external_providers_dir: ~/.llama/providers.d/
|
||||
```
|
||||
|
||||
The provider will now be available in Llama Stack with the type `remote::custom_ollama`.
|
||||
|
||||
|
||||
### Example using `module`: ramalama-stack
|
||||
|
||||
[ramalama-stack](https://github.com/containers/ramalama-stack) is a recognized external provider that supports installation via module.
|
||||
|
||||
To install Llama Stack with this external provider a user can provider the following build.yaml:
|
||||
|
||||
```yaml
|
||||
version: 2
|
||||
distribution_spec:
|
||||
description: Use (an external) Ramalama server for running LLM inference
|
||||
container_image: null
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::ramalama
|
||||
module: ramalama_stack==0.3.0a0
|
||||
image_type: venv
|
||||
image_name: null
|
||||
external_providers_dir: null
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- sqlalchemy[asyncio]
|
||||
```
|
||||
|
||||
No other steps are required other than `llama stack build` and `llama stack run`. The build process will use `module` to install all of the provider dependencies, retrieve the spec, etc.
|
||||
|
||||
The provider will now be available in Llama Stack with the type `remote::ramalama`.
|
10
docs/source/providers/external/external-providers-list.md
vendored
Normal file
10
docs/source/providers/external/external-providers-list.md
vendored
Normal file
|
@ -0,0 +1,10 @@
|
|||
# Known External Providers
|
||||
|
||||
Here's a list of known external providers that you can use with Llama Stack:
|
||||
|
||||
| Name | Description | API | Type | Repository |
|
||||
|------|-------------|-----|------|------------|
|
||||
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
|
||||
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Inline **and** Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
|
||||
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
|
||||
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
|
13
docs/source/providers/external/index.md
vendored
Normal file
13
docs/source/providers/external/index.md
vendored
Normal file
|
@ -0,0 +1,13 @@
|
|||
# External Providers
|
||||
|
||||
Llama Stack supports external providers that live outside of the main codebase. This allows you to:
|
||||
- Create and maintain your own providers independently
|
||||
- Share providers with others without contributing to the main codebase
|
||||
- Keep provider-specific code separate from the core Llama Stack code
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
external-providers-list
|
||||
external-providers-guide
|
||||
```
|
Loading…
Add table
Add a link
Reference in a new issue