mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-03 09:21:45 +00:00
Add info about eom and tool role
This commit is contained in:
parent
a2734d24e7
commit
8a76fb32f3
1 changed files with 21 additions and 7 deletions
|
@ -48,6 +48,7 @@ def usecases(base_model: bool = False) -> List[UseCase | str]:
|
|||
- at the end of a direct interaction between the model and the user
|
||||
- at the end of multiple interactions between the model and any available tools
|
||||
This token signals to the executor that the model has finished generating a response.
|
||||
- `<|eom|>`: End of message. This tag is used with the `tool` role, and is used at the end of the response from the executor.
|
||||
- `<|image_start|>` and `<|image_end|>`: These tokens enclose the image data in the prompt.
|
||||
- `<|patch|>`: This token represents a piece of the tile/
|
||||
- `<|tile_y_separator|>` and `<|tile_x_separator|>`: These tokens are used to separate the y and x tiles of an image
|
||||
|
@ -56,10 +57,11 @@ def usecases(base_model: bool = False) -> List[UseCase | str]:
|
|||
),
|
||||
textwrap.dedent(
|
||||
"""
|
||||
There are 3 different roles that are supported by Llama 4
|
||||
There are 4 different roles that are supported by Llama 4
|
||||
- `system`: Sets the context in which to interact with the AI model. It typically includes rules, guidelines, or necessary information that helps the model respond effectively.
|
||||
- `user`: Represents the human interacting with the model. It includes the inputs, commands, and questions to the model.
|
||||
- `assistant`: Represents the response generated by the AI model based on the context provided in the `system`, `tool` and `user` prompts.
|
||||
- `tool`: Represents the output of a tool call when sent back to the model from the executor. (The actual token used by the model is `<|ipython|>`.)
|
||||
"""
|
||||
),
|
||||
]
|
||||
|
@ -72,13 +74,17 @@ def usecases(base_model: bool = False) -> List[UseCase | str]:
|
|||
Llama4UseCase(
|
||||
title="Text completion - Paris information",
|
||||
description="Text completion for Llama 4 base model uses this format.",
|
||||
dialogs=[TextCompletionContent(content="The capital of France is Paris")],
|
||||
dialogs=[
|
||||
TextCompletionContent(content="The capital of France is Paris")
|
||||
],
|
||||
),
|
||||
Llama4UseCase(
|
||||
title="Text completion - The color of the sky",
|
||||
description="Text completion for Llama 4 base model uses this format.",
|
||||
dialogs=[
|
||||
TextCompletionContent(content="The color of the sky is blue but sometimes it can also be")
|
||||
TextCompletionContent(
|
||||
content="The color of the sky is blue but sometimes it can also be"
|
||||
)
|
||||
],
|
||||
notes="",
|
||||
),
|
||||
|
@ -105,7 +111,9 @@ def usecases(base_model: bool = False) -> List[UseCase | str]:
|
|||
description="Here is a regular multi-turn user assistant conversation and how its formatted.",
|
||||
dialogs=[
|
||||
[
|
||||
RawMessage(role="system", content="You are a helpful assistant"),
|
||||
RawMessage(
|
||||
role="system", content="You are a helpful assistant"
|
||||
),
|
||||
RawMessage(
|
||||
role="user",
|
||||
content="Answer who are you in the form of jeopardy?",
|
||||
|
@ -125,7 +133,9 @@ def usecases(base_model: bool = False) -> List[UseCase | str]:
|
|||
role="user",
|
||||
content=[
|
||||
RawMediaItem(data=BytesIO(img_small_dog)),
|
||||
RawTextItem(text="Describe this image in two sentences"),
|
||||
RawTextItem(
|
||||
text="Describe this image in two sentences"
|
||||
),
|
||||
],
|
||||
)
|
||||
]
|
||||
|
@ -147,7 +157,9 @@ def usecases(base_model: bool = False) -> List[UseCase | str]:
|
|||
role="user",
|
||||
content=[
|
||||
RawMediaItem(data=BytesIO(img_dog)),
|
||||
RawTextItem(text="Describe this image in two sentences"),
|
||||
RawTextItem(
|
||||
text="Describe this image in two sentences"
|
||||
),
|
||||
],
|
||||
)
|
||||
]
|
||||
|
@ -169,7 +181,9 @@ def usecases(base_model: bool = False) -> List[UseCase | str]:
|
|||
content=[
|
||||
RawMediaItem(data=BytesIO(img_dog)),
|
||||
RawMediaItem(data=BytesIO(img_pasta)),
|
||||
RawTextItem(text="Describe these images in two sentences"),
|
||||
RawTextItem(
|
||||
text="Describe these images in two sentences"
|
||||
),
|
||||
],
|
||||
)
|
||||
]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue