mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-08 13:00:52 +00:00
feat: Adding OpenAI Compatible Prompts API
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
30117dea22
commit
8b00883abd
181 changed files with 21356 additions and 10332 deletions
|
@ -6,15 +6,14 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.core.datatypes import Api
|
||||
from llama_stack.core.datatypes import AccessRule, Api
|
||||
|
||||
from .config import S3FilesImplConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: S3FilesImplConfig, deps: dict[Api, Any]):
|
||||
async def get_adapter_impl(config: S3FilesImplConfig, deps: dict[Api, Any], policy: list[AccessRule] | None = None):
|
||||
from .files import S3FilesImpl
|
||||
|
||||
# TODO: authorization policies and user separation
|
||||
impl = S3FilesImpl(config)
|
||||
impl = S3FilesImpl(config, policy or [])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -4,9 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import time
|
||||
import uuid
|
||||
from typing import Annotated
|
||||
from datetime import UTC, datetime
|
||||
from typing import Annotated, Any
|
||||
|
||||
import boto3
|
||||
from botocore.exceptions import BotoCoreError, ClientError, NoCredentialsError
|
||||
|
@ -15,14 +15,17 @@ from fastapi import File, Form, Response, UploadFile
|
|||
from llama_stack.apis.common.errors import ResourceNotFoundError
|
||||
from llama_stack.apis.common.responses import Order
|
||||
from llama_stack.apis.files import (
|
||||
ExpiresAfter,
|
||||
Files,
|
||||
ListOpenAIFileResponse,
|
||||
OpenAIFileDeleteResponse,
|
||||
OpenAIFileObject,
|
||||
OpenAIFilePurpose,
|
||||
)
|
||||
from llama_stack.core.datatypes import AccessRule
|
||||
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStore, sqlstore_impl
|
||||
from llama_stack.providers.utils.sqlstore.authorized_sqlstore import AuthorizedSqlStore
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import sqlstore_impl
|
||||
|
||||
from .config import S3FilesImplConfig
|
||||
|
||||
|
@ -83,22 +86,85 @@ async def _create_bucket_if_not_exists(client: boto3.client, config: S3FilesImpl
|
|||
raise RuntimeError(f"Failed to access S3 bucket '{config.bucket_name}': {e}") from e
|
||||
|
||||
|
||||
def _make_file_object(
|
||||
*,
|
||||
id: str,
|
||||
filename: str,
|
||||
purpose: str,
|
||||
bytes: int,
|
||||
created_at: int,
|
||||
expires_at: int,
|
||||
**kwargs: Any, # here to ignore any additional fields, e.g. extra fields from AuthorizedSqlStore
|
||||
) -> OpenAIFileObject:
|
||||
"""
|
||||
Construct an OpenAIFileObject and normalize expires_at.
|
||||
|
||||
If expires_at is greater than the max we treat it as no-expiration and
|
||||
return None for expires_at.
|
||||
|
||||
The OpenAI spec says expires_at type is Integer, but the implementation
|
||||
will return None for no expiration.
|
||||
"""
|
||||
obj = OpenAIFileObject(
|
||||
id=id,
|
||||
filename=filename,
|
||||
purpose=OpenAIFilePurpose(purpose),
|
||||
bytes=bytes,
|
||||
created_at=created_at,
|
||||
expires_at=expires_at,
|
||||
)
|
||||
|
||||
if obj.expires_at is not None and obj.expires_at > (obj.created_at + ExpiresAfter.MAX):
|
||||
obj.expires_at = None # type: ignore
|
||||
|
||||
return obj
|
||||
|
||||
|
||||
class S3FilesImpl(Files):
|
||||
"""S3-based implementation of the Files API."""
|
||||
|
||||
# TODO: implement expiration, for now a silly offset
|
||||
_SILLY_EXPIRATION_OFFSET = 100 * 365 * 24 * 60 * 60
|
||||
|
||||
def __init__(self, config: S3FilesImplConfig) -> None:
|
||||
def __init__(self, config: S3FilesImplConfig, policy: list[AccessRule]) -> None:
|
||||
self._config = config
|
||||
self.policy = policy
|
||||
self._client: boto3.client | None = None
|
||||
self._sql_store: SqlStore | None = None
|
||||
self._sql_store: AuthorizedSqlStore | None = None
|
||||
|
||||
def _now(self) -> int:
|
||||
"""Return current UTC timestamp as int seconds."""
|
||||
return int(datetime.now(UTC).timestamp())
|
||||
|
||||
async def _get_file(self, file_id: str, return_expired: bool = False) -> dict[str, Any]:
|
||||
where: dict[str, str | dict] = {"id": file_id}
|
||||
if not return_expired:
|
||||
where["expires_at"] = {">": self._now()}
|
||||
if not (row := await self.sql_store.fetch_one("openai_files", policy=self.policy, where=where)):
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()")
|
||||
return row
|
||||
|
||||
async def _delete_file(self, file_id: str) -> None:
|
||||
"""Delete a file from S3 and the database."""
|
||||
try:
|
||||
self.client.delete_object(
|
||||
Bucket=self._config.bucket_name,
|
||||
Key=file_id,
|
||||
)
|
||||
except ClientError as e:
|
||||
if e.response["Error"]["Code"] != "NoSuchKey":
|
||||
raise RuntimeError(f"Failed to delete file from S3: {e}") from e
|
||||
|
||||
await self.sql_store.delete("openai_files", where={"id": file_id})
|
||||
|
||||
async def _delete_if_expired(self, file_id: str) -> None:
|
||||
"""If the file exists and is expired, delete it."""
|
||||
if row := await self._get_file(file_id, return_expired=True):
|
||||
if (expires_at := row.get("expires_at")) and expires_at <= self._now():
|
||||
await self._delete_file(file_id)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self._client = _create_s3_client(self._config)
|
||||
await _create_bucket_if_not_exists(self._client, self._config)
|
||||
|
||||
self._sql_store = sqlstore_impl(self._config.metadata_store)
|
||||
self._sql_store = AuthorizedSqlStore(sqlstore_impl(self._config.metadata_store))
|
||||
await self._sql_store.create_table(
|
||||
"openai_files",
|
||||
{
|
||||
|
@ -121,7 +187,7 @@ class S3FilesImpl(Files):
|
|||
return self._client
|
||||
|
||||
@property
|
||||
def sql_store(self) -> SqlStore:
|
||||
def sql_store(self) -> AuthorizedSqlStore:
|
||||
assert self._sql_store is not None, "Provider not initialized"
|
||||
return self._sql_store
|
||||
|
||||
|
@ -129,27 +195,47 @@ class S3FilesImpl(Files):
|
|||
self,
|
||||
file: Annotated[UploadFile, File()],
|
||||
purpose: Annotated[OpenAIFilePurpose, Form()],
|
||||
expires_after_anchor: Annotated[str | None, Form(alias="expires_after[anchor]")] = None,
|
||||
expires_after_seconds: Annotated[int | None, Form(alias="expires_after[seconds]")] = None,
|
||||
) -> OpenAIFileObject:
|
||||
file_id = f"file-{uuid.uuid4().hex}"
|
||||
|
||||
filename = getattr(file, "filename", None) or "uploaded_file"
|
||||
|
||||
created_at = int(time.time())
|
||||
expires_at = created_at + self._SILLY_EXPIRATION_OFFSET
|
||||
created_at = self._now()
|
||||
|
||||
expires_after = None
|
||||
if expires_after_anchor is not None or expires_after_seconds is not None:
|
||||
# we use ExpiresAfter to validate input
|
||||
expires_after = ExpiresAfter(
|
||||
anchor=expires_after_anchor, # type: ignore[arg-type]
|
||||
seconds=expires_after_seconds, # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
# the default is no expiration.
|
||||
# to implement no expiration we set an expiration beyond the max.
|
||||
# we'll hide this fact from users when returning the file object.
|
||||
expires_at = created_at + ExpiresAfter.MAX * 42
|
||||
# the default for BATCH files is 30 days, which happens to be the expiration max.
|
||||
if purpose == OpenAIFilePurpose.BATCH:
|
||||
expires_at = created_at + ExpiresAfter.MAX
|
||||
|
||||
if expires_after is not None:
|
||||
expires_at = created_at + expires_after.seconds
|
||||
|
||||
content = await file.read()
|
||||
file_size = len(content)
|
||||
|
||||
await self.sql_store.insert(
|
||||
"openai_files",
|
||||
{
|
||||
"id": file_id,
|
||||
"filename": filename,
|
||||
"purpose": purpose.value,
|
||||
"bytes": file_size,
|
||||
"created_at": created_at,
|
||||
"expires_at": expires_at,
|
||||
},
|
||||
)
|
||||
entry: dict[str, Any] = {
|
||||
"id": file_id,
|
||||
"filename": filename,
|
||||
"purpose": purpose.value,
|
||||
"bytes": file_size,
|
||||
"created_at": created_at,
|
||||
"expires_at": expires_at,
|
||||
}
|
||||
|
||||
await self.sql_store.insert("openai_files", entry)
|
||||
|
||||
try:
|
||||
self.client.put_object(
|
||||
|
@ -163,14 +249,7 @@ class S3FilesImpl(Files):
|
|||
|
||||
raise RuntimeError(f"Failed to upload file to S3: {e}") from e
|
||||
|
||||
return OpenAIFileObject(
|
||||
id=file_id,
|
||||
filename=filename,
|
||||
purpose=purpose,
|
||||
bytes=file_size,
|
||||
created_at=created_at,
|
||||
expires_at=expires_at,
|
||||
)
|
||||
return _make_file_object(**entry)
|
||||
|
||||
async def openai_list_files(
|
||||
self,
|
||||
|
@ -183,29 +262,20 @@ class S3FilesImpl(Files):
|
|||
if not order:
|
||||
order = Order.desc
|
||||
|
||||
where_conditions = {}
|
||||
where_conditions: dict[str, Any] = {"expires_at": {">": self._now()}}
|
||||
if purpose:
|
||||
where_conditions["purpose"] = purpose.value
|
||||
|
||||
paginated_result = await self.sql_store.fetch_all(
|
||||
table="openai_files",
|
||||
where=where_conditions if where_conditions else None,
|
||||
policy=self.policy,
|
||||
where=where_conditions,
|
||||
order_by=[("created_at", order.value)],
|
||||
cursor=("id", after) if after else None,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
files = [
|
||||
OpenAIFileObject(
|
||||
id=row["id"],
|
||||
filename=row["filename"],
|
||||
purpose=OpenAIFilePurpose(row["purpose"]),
|
||||
bytes=row["bytes"],
|
||||
created_at=row["created_at"],
|
||||
expires_at=row["expires_at"],
|
||||
)
|
||||
for row in paginated_result.data
|
||||
]
|
||||
files = [_make_file_object(**row) for row in paginated_result.data]
|
||||
|
||||
return ListOpenAIFileResponse(
|
||||
data=files,
|
||||
|
@ -216,41 +286,20 @@ class S3FilesImpl(Files):
|
|||
)
|
||||
|
||||
async def openai_retrieve_file(self, file_id: str) -> OpenAIFileObject:
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()")
|
||||
|
||||
return OpenAIFileObject(
|
||||
id=row["id"],
|
||||
filename=row["filename"],
|
||||
purpose=OpenAIFilePurpose(row["purpose"]),
|
||||
bytes=row["bytes"],
|
||||
created_at=row["created_at"],
|
||||
expires_at=row["expires_at"],
|
||||
)
|
||||
await self._delete_if_expired(file_id)
|
||||
row = await self._get_file(file_id)
|
||||
return _make_file_object(**row)
|
||||
|
||||
async def openai_delete_file(self, file_id: str) -> OpenAIFileDeleteResponse:
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()")
|
||||
|
||||
try:
|
||||
self.client.delete_object(
|
||||
Bucket=self._config.bucket_name,
|
||||
Key=row["id"],
|
||||
)
|
||||
except ClientError as e:
|
||||
if e.response["Error"]["Code"] != "NoSuchKey":
|
||||
raise RuntimeError(f"Failed to delete file from S3: {e}") from e
|
||||
|
||||
await self.sql_store.delete("openai_files", where={"id": file_id})
|
||||
|
||||
await self._delete_if_expired(file_id)
|
||||
_ = await self._get_file(file_id) # raises if not found
|
||||
await self._delete_file(file_id)
|
||||
return OpenAIFileDeleteResponse(id=file_id, deleted=True)
|
||||
|
||||
async def openai_retrieve_file_content(self, file_id: str) -> Response:
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
if not row:
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()")
|
||||
await self._delete_if_expired(file_id)
|
||||
|
||||
row = await self._get_file(file_id)
|
||||
|
||||
try:
|
||||
response = self.client.get_object(
|
||||
|
@ -261,7 +310,7 @@ class S3FilesImpl(Files):
|
|||
content = response["Body"].read()
|
||||
except ClientError as e:
|
||||
if e.response["Error"]["Code"] == "NoSuchKey":
|
||||
await self.sql_store.delete("openai_files", where={"id": file_id})
|
||||
await self._delete_file(file_id)
|
||||
raise ResourceNotFoundError(file_id, "File", "files.list()") from e
|
||||
raise RuntimeError(f"Failed to download file from S3: {e}") from e
|
||||
|
||||
|
|
|
@ -41,10 +41,10 @@ client.initialize()
|
|||
|
||||
### Create Completion
|
||||
|
||||
> Note on Completion API
|
||||
>
|
||||
> The hosted NVIDIA Llama NIMs (e.g., `meta-llama/Llama-3.1-8B-Instruct`) with ```NVIDIA_BASE_URL="https://integrate.api.nvidia.com"``` does not support the ```completion``` method, while the locally deployed NIM does.
|
||||
The following example shows how to create a completion for an NVIDIA NIM.
|
||||
|
||||
> [!NOTE]
|
||||
> The hosted NVIDIA Llama NIMs (for example ```meta-llama/Llama-3.1-8B-Instruct```) that have ```NVIDIA_BASE_URL="https://integrate.api.nvidia.com"``` do not support the ```completion``` method, while locally deployed NIMs do.
|
||||
|
||||
```python
|
||||
response = client.inference.completion(
|
||||
|
@ -60,6 +60,8 @@ print(f"Response: {response.content}")
|
|||
|
||||
### Create Chat Completion
|
||||
|
||||
The following example shows how to create a chat completion for an NVIDIA NIM.
|
||||
|
||||
```python
|
||||
response = client.inference.chat_completion(
|
||||
model_id="meta-llama/Llama-3.1-8B-Instruct",
|
||||
|
@ -82,6 +84,9 @@ print(f"Response: {response.completion_message.content}")
|
|||
```
|
||||
|
||||
### Tool Calling Example ###
|
||||
|
||||
The following example shows how to do tool calling for an NVIDIA NIM.
|
||||
|
||||
```python
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
|
||||
|
@ -117,6 +122,9 @@ if tool_response.completion_message.tool_calls:
|
|||
```
|
||||
|
||||
### Structured Output Example
|
||||
|
||||
The following example shows how to do structured output for an NVIDIA NIM.
|
||||
|
||||
```python
|
||||
from llama_stack.apis.inference import JsonSchemaResponseFormat, ResponseFormatType
|
||||
|
||||
|
@ -149,8 +157,10 @@ print(f"Structured Response: {structured_response.completion_message.content}")
|
|||
```
|
||||
|
||||
### Create Embeddings
|
||||
> Note on OpenAI embeddings compatibility
|
||||
>
|
||||
|
||||
The following example shows how to create embeddings for an NVIDIA NIM.
|
||||
|
||||
> [!NOTE]
|
||||
> NVIDIA asymmetric embedding models (e.g., `nvidia/llama-3.2-nv-embedqa-1b-v2`) require an `input_type` parameter not present in the standard OpenAI embeddings API. The NVIDIA Inference Adapter automatically sets `input_type="query"` when using the OpenAI-compatible embeddings endpoint for NVIDIA. For passage embeddings, use the `embeddings` API with `task_type="document"`.
|
||||
|
||||
```python
|
||||
|
@ -160,4 +170,42 @@ response = client.inference.embeddings(
|
|||
task_type="query",
|
||||
)
|
||||
print(f"Embeddings: {response.embeddings}")
|
||||
```
|
||||
```
|
||||
|
||||
### Vision Language Models Example
|
||||
|
||||
The following example shows how to run vision inference by using an NVIDIA NIM.
|
||||
|
||||
```python
|
||||
def load_image_as_base64(image_path):
|
||||
with open(image_path, "rb") as image_file:
|
||||
img_bytes = image_file.read()
|
||||
return base64.b64encode(img_bytes).decode("utf-8")
|
||||
|
||||
|
||||
image_path = {path_to_the_image}
|
||||
demo_image_b64 = load_image_as_base64(image_path)
|
||||
|
||||
vlm_response = client.inference.chat_completion(
|
||||
model_id="nvidia/vila",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": {
|
||||
"data": demo_image_b64,
|
||||
},
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Please describe what you see in this image in detail.",
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
print(f"VLM Response: {vlm_response.completion_message.content}")
|
||||
```
|
||||
|
|
|
@ -55,6 +55,10 @@ MODEL_ENTRIES = [
|
|||
"meta/llama-3.3-70b-instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="nvidia/vila",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
# NeMo Retriever Text Embedding models -
|
||||
#
|
||||
# https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
|
||||
|
|
|
@ -118,10 +118,10 @@ class OllamaInferenceAdapter(
|
|||
|
||||
async def initialize(self) -> None:
|
||||
logger.info(f"checking connectivity to Ollama at `{self.config.url}`...")
|
||||
health_response = await self.health()
|
||||
if health_response["status"] == HealthStatus.ERROR:
|
||||
r = await self.health()
|
||||
if r["status"] == HealthStatus.ERROR:
|
||||
logger.warning(
|
||||
"Ollama Server is not running, make sure to start it using `ollama serve` in a separate terminal"
|
||||
f"Ollama Server is not running (message: {r['message']}). Make sure to start it using `ollama serve` in a separate terminal"
|
||||
)
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
|
@ -156,7 +156,7 @@ class OllamaInferenceAdapter(
|
|||
),
|
||||
Model(
|
||||
identifier="nomic-embed-text",
|
||||
provider_resource_id="nomic-embed-text",
|
||||
provider_resource_id="nomic-embed-text:latest",
|
||||
provider_id=provider_id,
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
|
|
|
@ -7,8 +7,8 @@
|
|||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from ibm_watson_machine_learning.foundation_models import Model
|
||||
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
||||
from ibm_watsonx_ai.foundation_models import Model
|
||||
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import heapq
|
||||
from typing import Any
|
||||
|
||||
import psycopg2
|
||||
|
@ -23,6 +24,9 @@ from llama_stack.apis.vector_io import (
|
|||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
|
@ -31,6 +35,7 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import WeightedInMemoryAggregator, sanitize_collection_name
|
||||
|
||||
from .config import PGVectorVectorIOConfig
|
||||
|
||||
|
@ -72,25 +77,63 @@ def load_models(cur, cls):
|
|||
|
||||
|
||||
class PGVectorIndex(EmbeddingIndex):
|
||||
def __init__(self, vector_db: VectorDB, dimension: int, conn, kvstore: KVStore | None = None):
|
||||
self.conn = conn
|
||||
with conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
# Sanitize the table name by replacing hyphens with underscores
|
||||
# SQL doesn't allow hyphens in table names, and vector_db.identifier may contain hyphens
|
||||
# when created with patterns like "test-vector-db-{uuid4()}"
|
||||
sanitized_identifier = vector_db.identifier.replace("-", "_")
|
||||
self.table_name = f"vector_store_{sanitized_identifier}"
|
||||
self.kvstore = kvstore
|
||||
# reference: https://github.com/pgvector/pgvector?tab=readme-ov-file#querying
|
||||
PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION: dict[str, str] = {
|
||||
"L2": "<->",
|
||||
"L1": "<+>",
|
||||
"COSINE": "<=>",
|
||||
"INNER_PRODUCT": "<#>",
|
||||
"HAMMING": "<~>",
|
||||
"JACCARD": "<%>",
|
||||
}
|
||||
|
||||
cur.execute(
|
||||
f"""
|
||||
CREATE TABLE IF NOT EXISTS {self.table_name} (
|
||||
id TEXT PRIMARY KEY,
|
||||
document JSONB,
|
||||
embedding vector({dimension})
|
||||
def __init__(
|
||||
self,
|
||||
vector_db: VectorDB,
|
||||
dimension: int,
|
||||
conn: psycopg2.extensions.connection,
|
||||
kvstore: KVStore | None = None,
|
||||
distance_metric: str = "COSINE",
|
||||
):
|
||||
self.vector_db = vector_db
|
||||
self.dimension = dimension
|
||||
self.conn = conn
|
||||
self.kvstore = kvstore
|
||||
self.check_distance_metric_availability(distance_metric)
|
||||
self.distance_metric = distance_metric
|
||||
self.table_name = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
# Sanitize the table name by replacing hyphens with underscores
|
||||
# SQL doesn't allow hyphens in table names, and vector_db.identifier may contain hyphens
|
||||
# when created with patterns like "test-vector-db-{uuid4()}"
|
||||
sanitized_identifier = sanitize_collection_name(self.vector_db.identifier)
|
||||
self.table_name = f"vs_{sanitized_identifier}"
|
||||
|
||||
cur.execute(
|
||||
f"""
|
||||
CREATE TABLE IF NOT EXISTS {self.table_name} (
|
||||
id TEXT PRIMARY KEY,
|
||||
document JSONB,
|
||||
embedding vector({self.dimension}),
|
||||
content_text TEXT,
|
||||
tokenized_content TSVECTOR
|
||||
)
|
||||
"""
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
# Create GIN index for full-text search performance
|
||||
cur.execute(
|
||||
f"""
|
||||
CREATE INDEX IF NOT EXISTS {self.table_name}_content_gin_idx
|
||||
ON {self.table_name} USING GIN(tokenized_content)
|
||||
"""
|
||||
)
|
||||
except Exception as e:
|
||||
log.exception(f"Error creating PGVectorIndex for vector_db: {self.vector_db.identifier}")
|
||||
raise RuntimeError(f"Error creating PGVectorIndex for vector_db: {self.vector_db.identifier}") from e
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
|
@ -99,29 +142,49 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
|
||||
values = []
|
||||
for i, chunk in enumerate(chunks):
|
||||
content_text = interleaved_content_as_str(chunk.content)
|
||||
values.append(
|
||||
(
|
||||
f"{chunk.chunk_id}",
|
||||
Json(chunk.model_dump()),
|
||||
embeddings[i].tolist(),
|
||||
content_text,
|
||||
content_text, # Pass content_text twice - once for content_text column, once for to_tsvector function. Eg. to_tsvector(content_text) = tokenized_content
|
||||
)
|
||||
)
|
||||
|
||||
query = sql.SQL(
|
||||
f"""
|
||||
INSERT INTO {self.table_name} (id, document, embedding)
|
||||
INSERT INTO {self.table_name} (id, document, embedding, content_text, tokenized_content)
|
||||
VALUES %s
|
||||
ON CONFLICT (id) DO UPDATE SET embedding = EXCLUDED.embedding, document = EXCLUDED.document
|
||||
ON CONFLICT (id) DO UPDATE SET
|
||||
embedding = EXCLUDED.embedding,
|
||||
document = EXCLUDED.document,
|
||||
content_text = EXCLUDED.content_text,
|
||||
tokenized_content = EXCLUDED.tokenized_content
|
||||
"""
|
||||
)
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
execute_values(cur, query, values, template="(%s, %s, %s::vector)")
|
||||
execute_values(cur, query, values, template="(%s, %s, %s::vector, %s, to_tsvector('english', %s))")
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
"""
|
||||
Performs vector similarity search using PostgreSQL's search function. Default distance metric is COSINE.
|
||||
|
||||
Args:
|
||||
embedding: The query embedding vector
|
||||
k: Number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
|
||||
Returns:
|
||||
QueryChunksResponse with combined results
|
||||
"""
|
||||
pgvector_search_function = self.get_pgvector_search_function()
|
||||
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
f"""
|
||||
SELECT document, embedding <-> %s::vector AS distance
|
||||
SELECT document, embedding {pgvector_search_function} %s::vector AS distance
|
||||
FROM {self.table_name}
|
||||
ORDER BY distance
|
||||
LIMIT %s
|
||||
|
@ -147,7 +210,40 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
k: int,
|
||||
score_threshold: float,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in PGVector")
|
||||
"""
|
||||
Performs keyword-based search using PostgreSQL's full-text search with ts_rank scoring.
|
||||
|
||||
Args:
|
||||
query_string: The text query for keyword search
|
||||
k: Number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
|
||||
Returns:
|
||||
QueryChunksResponse with combined results
|
||||
"""
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
# Use plainto_tsquery to handle user input safely and ts_rank for relevance scoring
|
||||
cur.execute(
|
||||
f"""
|
||||
SELECT document, ts_rank(tokenized_content, plainto_tsquery('english', %s)) AS score
|
||||
FROM {self.table_name}
|
||||
WHERE tokenized_content @@ plainto_tsquery('english', %s)
|
||||
ORDER BY score DESC
|
||||
LIMIT %s
|
||||
""",
|
||||
(query_string, query_string, k),
|
||||
)
|
||||
results = cur.fetchall()
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc, score in results:
|
||||
if score < score_threshold:
|
||||
continue
|
||||
chunks.append(Chunk(**doc))
|
||||
scores.append(float(score))
|
||||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
|
@ -158,7 +254,59 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
reranker_type: str,
|
||||
reranker_params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Hybrid search is not supported in PGVector")
|
||||
"""
|
||||
Hybrid search combining vector similarity and keyword search using configurable reranking.
|
||||
|
||||
Args:
|
||||
embedding: The query embedding vector
|
||||
query_string: The text query for keyword search
|
||||
k: Number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
reranker_type: Type of reranker to use ("rrf" or "weighted")
|
||||
reranker_params: Parameters for the reranker
|
||||
|
||||
Returns:
|
||||
QueryChunksResponse with combined results
|
||||
"""
|
||||
if reranker_params is None:
|
||||
reranker_params = {}
|
||||
|
||||
# Get results from both search methods
|
||||
vector_response = await self.query_vector(embedding, k, score_threshold)
|
||||
keyword_response = await self.query_keyword(query_string, k, score_threshold)
|
||||
|
||||
# Convert responses to score dictionaries using chunk_id
|
||||
vector_scores = {
|
||||
chunk.chunk_id: score for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
|
||||
}
|
||||
keyword_scores = {
|
||||
chunk.chunk_id: score
|
||||
for chunk, score in zip(keyword_response.chunks, keyword_response.scores, strict=False)
|
||||
}
|
||||
|
||||
# Combine scores using the reranking utility
|
||||
combined_scores = WeightedInMemoryAggregator.combine_search_results(
|
||||
vector_scores, keyword_scores, reranker_type, reranker_params
|
||||
)
|
||||
|
||||
# Efficient top-k selection because it only tracks the k best candidates it's seen so far
|
||||
top_k_items = heapq.nlargest(k, combined_scores.items(), key=lambda x: x[1])
|
||||
|
||||
# Filter by score threshold
|
||||
filtered_items = [(doc_id, score) for doc_id, score in top_k_items if score >= score_threshold]
|
||||
|
||||
# Create a map of chunk_id to chunk for both responses
|
||||
chunk_map = {c.chunk_id: c for c in vector_response.chunks + keyword_response.chunks}
|
||||
|
||||
# Use the map to look up chunks by their IDs
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc_id, score in filtered_items:
|
||||
if doc_id in chunk_map:
|
||||
chunks.append(chunk_map[doc_id])
|
||||
scores.append(score)
|
||||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
|
@ -170,6 +318,25 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE id = ANY(%s)", (chunk_ids,))
|
||||
|
||||
def get_pgvector_search_function(self) -> str:
|
||||
return self.PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION[self.distance_metric]
|
||||
|
||||
def check_distance_metric_availability(self, distance_metric: str) -> None:
|
||||
"""Check if the distance metric is supported by PGVector.
|
||||
|
||||
Args:
|
||||
distance_metric: The distance metric to check
|
||||
|
||||
Raises:
|
||||
ValueError: If the distance metric is not supported
|
||||
"""
|
||||
if distance_metric not in self.PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION:
|
||||
supported_metrics = list(self.PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION.keys())
|
||||
raise ValueError(
|
||||
f"Distance metric '{distance_metric}' is not supported by PGVector. "
|
||||
f"Supported metrics are: {', '.join(supported_metrics)}"
|
||||
)
|
||||
|
||||
|
||||
class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
|
@ -185,8 +352,8 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
self.files_api = files_api
|
||||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
self.openai_vector_store: dict[str, dict[str, Any]] = {}
|
||||
self.metadatadata_collection_name = "openai_vector_stores_metadata"
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
log.info(f"Initializing PGVector memory adapter with config: {self.config}")
|
||||
|
@ -233,9 +400,13 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
upsert_models(self.conn, [(vector_db.identifier, vector_db)])
|
||||
|
||||
# Create and cache the PGVector index table for the vector DB
|
||||
pgvector_index = PGVectorIndex(
|
||||
vector_db=vector_db, dimension=vector_db.embedding_dimension, conn=self.conn, kvstore=self.kvstore
|
||||
)
|
||||
await pgvector_index.initialize()
|
||||
index = VectorDBWithIndex(
|
||||
vector_db,
|
||||
index=PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn, kvstore=self.kvstore),
|
||||
index=pgvector_index,
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
@ -272,8 +443,15 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
if self.vector_db_store is None:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
|
||||
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn)
|
||||
await index.initialize()
|
||||
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue