feat: Structured output for Responses API (#2324)

# What does this PR do?

This adds the missing `text` parameter to the Responses API that is how
users control structured outputs. All we do with that parameter is map
it to the corresponding chat completion response_format.

## Test Plan

The new unit tests exercise the various permutations allowed for this
property, while a couple of new verification tests actually use it for
real to verify the model outputs are following the format as expected.

Unit tests:

`python -m pytest -s -v
tests/unit/providers/agents/meta_reference/test_openai_responses.py`

Verification tests:

```
llama stack run llama_stack/templates/together/run.yaml
pytest -s -vv 'tests/verifications/openai_api/test_responses.py' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```

Note that the verification tests can only be run with a real Llama Stack
server (as opposed to using the library client via
`--provider=stack:together`) because the Llama Stack python client is
not yet updated to accept this text field.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-06-03 17:43:00 -04:00 committed by GitHub
parent c70ca8344f
commit 8bee2954be
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 323 additions and 2 deletions

View file

@ -25,11 +25,17 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseObjectWithInput,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageWebSearchToolCall,
OpenAIResponseText,
OpenAIResponseTextFormat,
)
from llama_stack.apis.inference.inference import (
OpenAIAssistantMessageParam,
OpenAIChatCompletionContentPartTextParam,
OpenAIDeveloperMessageParam,
OpenAIJSONSchema,
OpenAIResponseFormatJSONObject,
OpenAIResponseFormatJSONSchema,
OpenAIResponseFormatText,
OpenAIUserMessageParam,
)
from llama_stack.apis.tools.tools import Tool, ToolGroups, ToolInvocationResult, ToolParameter, ToolRuntime
@ -96,6 +102,7 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
mock_inference_api.openai_chat_completion.assert_called_once_with(
model=model,
messages=[OpenAIUserMessageParam(role="user", content="What is the capital of Ireland?", name=None)],
response_format=OpenAIResponseFormatText(),
tools=None,
stream=False,
temperature=0.1,
@ -320,6 +327,7 @@ async def test_prepend_previous_response_basic(openai_responses_impl, mock_respo
model="fake_model",
output=[response_output_message],
status="completed",
text=OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")),
input=[input_item_message],
)
mock_responses_store.get_response_object.return_value = previous_response
@ -362,6 +370,7 @@ async def test_prepend_previous_response_web_search(openai_responses_impl, mock_
model="fake_model",
output=[output_web_search, output_message],
status="completed",
text=OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")),
input=[input_item_message],
)
mock_responses_store.get_response_object.return_value = response
@ -483,6 +492,7 @@ async def test_create_openai_response_with_instructions_and_previous_response(
model="fake_model",
output=[response_output_message],
status="completed",
text=OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")),
input=[input_item_message],
)
mock_responses_store.get_response_object.return_value = response
@ -576,6 +586,7 @@ async def test_responses_store_list_input_items_logic():
object="response",
status="completed",
output=[],
text=OpenAIResponseText(format=(OpenAIResponseTextFormat(type="text"))),
input=input_items,
)
@ -644,6 +655,7 @@ async def test_store_response_uses_rehydrated_input_with_previous_response(
created_at=1234567890,
model="meta-llama/Llama-3.1-8B-Instruct",
status="completed",
text=OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")),
input=[
OpenAIResponseMessage(
id="msg-prev-user", role="user", content=[OpenAIResponseInputMessageContentText(text="What is 2+2?")]
@ -694,3 +706,61 @@ async def test_store_response_uses_rehydrated_input_with_previous_response(
# Verify the response itself is correct
assert result.model == model
assert result.status == "completed"
@pytest.mark.asyncio
@pytest.mark.parametrize(
"text_format, response_format",
[
(OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")), OpenAIResponseFormatText()),
(
OpenAIResponseText(format=OpenAIResponseTextFormat(name="Test", schema={"foo": "bar"}, type="json_schema")),
OpenAIResponseFormatJSONSchema(json_schema=OpenAIJSONSchema(name="Test", schema={"foo": "bar"})),
),
(OpenAIResponseText(format=OpenAIResponseTextFormat(type="json_object")), OpenAIResponseFormatJSONObject()),
# ensure text param with no format specified defaults to text
(OpenAIResponseText(format=None), OpenAIResponseFormatText()),
# ensure text param of None defaults to text
(None, OpenAIResponseFormatText()),
],
)
async def test_create_openai_response_with_text_format(
openai_responses_impl, mock_inference_api, text_format, response_format
):
"""Test creating Responses with text formats."""
# Setup
input_text = "How hot it is in San Francisco today?"
model = "meta-llama/Llama-3.1-8B-Instruct"
# Load the chat completion fixture
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
# Execute
_result = await openai_responses_impl.create_openai_response(
input=input_text,
model=model,
text=text_format,
)
# Verify
first_call = mock_inference_api.openai_chat_completion.call_args_list[0]
assert first_call.kwargs["messages"][0].content == input_text
assert first_call.kwargs["response_format"] is not None
assert first_call.kwargs["response_format"] == response_format
@pytest.mark.asyncio
async def test_create_openai_response_with_invalid_text_format(openai_responses_impl, mock_inference_api):
"""Test creating an OpenAI response with an invalid text format."""
# Setup
input_text = "How hot it is in San Francisco today?"
model = "meta-llama/Llama-3.1-8B-Instruct"
# Execute
with pytest.raises(ValueError):
_result = await openai_responses_impl.create_openai_response(
input=input_text,
model=model,
text=OpenAIResponseText(format={"type": "invalid"}),
)

View file

@ -546,3 +546,39 @@ async def test_response_streaming_multi_turn_tool_execution(
assert expected_output.lower() in final_response.output_text.lower(), (
f"Expected '{expected_output}' to appear in response: {final_response.output_text}"
)
@pytest.mark.parametrize(
"text_format",
# Not testing json_object because most providers don't actually support it.
[
{"type": "text"},
{
"type": "json_schema",
"name": "capitals",
"description": "A schema for the capital of each country",
"schema": {"type": "object", "properties": {"capital": {"type": "string"}}},
"strict": True,
},
],
)
def test_response_text_format(request, openai_client, model, provider, verification_config, text_format):
if isinstance(openai_client, LlamaStackAsLibraryClient):
pytest.skip("Responses API text format is not yet supported in library client.")
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
stream = False
response = openai_client.responses.create(
model=model,
input="What is the capital of France?",
stream=stream,
text={"format": text_format},
)
# by_alias=True is needed because otherwise Pydantic renames our "schema" field
assert response.text.format.model_dump(exclude_none=True, by_alias=True) == text_format
assert "paris" in response.output_text.lower()
if text_format["type"] == "json_schema":
assert "paris" in json.loads(response.output_text)["capital"].lower()