Merge remote-tracking branch 'origin/main' into support_more_data_format

This commit is contained in:
Botao Chen 2025-01-14 11:55:13 -08:00
commit 8d7bb1140f
20 changed files with 381 additions and 414 deletions

View file

@ -3843,8 +3843,8 @@
"properties": {
"role": {
"type": "string",
"const": "ipython",
"default": "ipython"
"const": "tool",
"default": "tool"
},
"call_id": {
"type": "string"
@ -4185,14 +4185,7 @@
"$ref": "#/components/schemas/ChatCompletionResponseEventType"
},
"delta": {
"oneOf": [
{
"type": "string"
},
{
"$ref": "#/components/schemas/ToolCallDelta"
}
]
"$ref": "#/components/schemas/ContentDelta"
},
"logprobs": {
"type": "array",
@ -4232,6 +4225,50 @@
],
"title": "SSE-stream of these events."
},
"ContentDelta": {
"oneOf": [
{
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "text",
"default": "text"
},
"text": {
"type": "string"
}
},
"additionalProperties": false,
"required": [
"type",
"text"
]
},
{
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "image",
"default": "image"
},
"data": {
"type": "string",
"contentEncoding": "base64"
}
},
"additionalProperties": false,
"required": [
"type",
"data"
]
},
{
"$ref": "#/components/schemas/ToolCallDelta"
}
]
},
"TokenLogProbs": {
"type": "object",
"properties": {
@ -4250,6 +4287,11 @@
"ToolCallDelta": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "tool_call",
"default": "tool_call"
},
"content": {
"oneOf": [
{
@ -4266,6 +4308,7 @@
},
"additionalProperties": false,
"required": [
"type",
"content",
"parse_status"
]
@ -4275,8 +4318,8 @@
"enum": [
"started",
"in_progress",
"failure",
"success"
"failed",
"succeeded"
]
},
"CompletionRequest": {
@ -4777,18 +4820,16 @@
"step_id": {
"type": "string"
},
"text_delta": {
"type": "string"
},
"tool_call_delta": {
"$ref": "#/components/schemas/ToolCallDelta"
"delta": {
"$ref": "#/components/schemas/ContentDelta"
}
},
"additionalProperties": false,
"required": [
"event_type",
"step_type",
"step_id"
"step_id",
"delta"
]
},
"AgentTurnResponseStepStartPayload": {
@ -8758,6 +8799,10 @@
"name": "CompletionResponseStreamChunk",
"description": "streamed completion response.\n\n<SchemaDefinition schemaRef=\"#/components/schemas/CompletionResponseStreamChunk\" />"
},
{
"name": "ContentDelta",
"description": "<SchemaDefinition schemaRef=\"#/components/schemas/ContentDelta\" />"
},
{
"name": "CreateAgentRequest",
"description": "<SchemaDefinition schemaRef=\"#/components/schemas/CreateAgentRequest\" />"
@ -9392,6 +9437,7 @@
"CompletionRequest",
"CompletionResponse",
"CompletionResponseStreamChunk",
"ContentDelta",
"CreateAgentRequest",
"CreateAgentSessionRequest",
"CreateAgentTurnRequest",

View file

@ -150,6 +150,8 @@ components:
AgentTurnResponseStepProgressPayload:
additionalProperties: false
properties:
delta:
$ref: '#/components/schemas/ContentDelta'
event_type:
const: step_progress
default: step_progress
@ -163,14 +165,11 @@ components:
- shield_call
- memory_retrieval
type: string
text_delta:
type: string
tool_call_delta:
$ref: '#/components/schemas/ToolCallDelta'
required:
- event_type
- step_type
- step_id
- delta
type: object
AgentTurnResponseStepStartPayload:
additionalProperties: false
@ -462,9 +461,7 @@ components:
additionalProperties: false
properties:
delta:
oneOf:
- type: string
- $ref: '#/components/schemas/ToolCallDelta'
$ref: '#/components/schemas/ContentDelta'
event_type:
$ref: '#/components/schemas/ChatCompletionResponseEventType'
logprobs:
@ -571,6 +568,34 @@ components:
- delta
title: streamed completion response.
type: object
ContentDelta:
oneOf:
- additionalProperties: false
properties:
text:
type: string
type:
const: text
default: text
type: string
required:
- type
- text
type: object
- additionalProperties: false
properties:
data:
contentEncoding: base64
type: string
type:
const: image
default: image
type: string
required:
- type
- data
type: object
- $ref: '#/components/schemas/ToolCallDelta'
CreateAgentRequest:
additionalProperties: false
properties:
@ -2664,7 +2689,12 @@ components:
- $ref: '#/components/schemas/ToolCall'
parse_status:
$ref: '#/components/schemas/ToolCallParseStatus'
type:
const: tool_call
default: tool_call
type: string
required:
- type
- content
- parse_status
type: object
@ -2672,8 +2702,8 @@ components:
enum:
- started
- in_progress
- failure
- success
- failed
- succeeded
type: string
ToolChoice:
enum:
@ -2888,8 +2918,8 @@ components:
content:
$ref: '#/components/schemas/InterleavedContent'
role:
const: ipython
default: ipython
const: tool
default: tool
type: string
tool_name:
oneOf:
@ -5500,6 +5530,8 @@ tags:
<SchemaDefinition schemaRef="#/components/schemas/CompletionResponseStreamChunk"
/>'
name: CompletionResponseStreamChunk
- description: <SchemaDefinition schemaRef="#/components/schemas/ContentDelta" />
name: ContentDelta
- description: <SchemaDefinition schemaRef="#/components/schemas/CreateAgentRequest"
/>
name: CreateAgentRequest
@ -5939,6 +5971,7 @@ x-tagGroups:
- CompletionRequest
- CompletionResponse
- CompletionResponseStreamChunk
- ContentDelta
- CreateAgentRequest
- CreateAgentSessionRequest
- CreateAgentTurnRequest

View file

@ -22,12 +22,11 @@ from llama_models.schema_utils import json_schema_type, register_schema, webmeth
from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Annotated
from llama_stack.apis.common.content_types import InterleavedContent, URL
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent, URL
from llama_stack.apis.inference import (
CompletionMessage,
SamplingParams,
ToolCall,
ToolCallDelta,
ToolChoice,
ToolPromptFormat,
ToolResponse,
@ -216,8 +215,7 @@ class AgentTurnResponseStepProgressPayload(BaseModel):
step_type: StepType
step_id: str
text_delta: Optional[str] = None
tool_call_delta: Optional[ToolCallDelta] = None
delta: ContentDelta
@json_schema_type

View file

@ -11,9 +11,13 @@ from llama_models.llama3.api.tool_utils import ToolUtils
from termcolor import cprint
from llama_stack.apis.agents import AgentTurnResponseEventType, StepType
from llama_stack.apis.common.content_types import ToolCallParseStatus
from llama_stack.apis.inference import ToolResponseMessage
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
class LogEvent:
def __init__(
@ -57,8 +61,11 @@ class EventLogger:
# since it does not produce event but instead
# a Message
if isinstance(chunk, ToolResponseMessage):
yield chunk, LogEvent(
role="CustomTool", content=chunk.content, color="grey"
yield (
chunk,
LogEvent(
role="CustomTool", content=chunk.content, color="grey"
),
)
continue
@ -80,14 +87,20 @@ class EventLogger:
):
violation = event.payload.step_details.violation
if not violation:
yield event, LogEvent(
role=step_type, content="No Violation", color="magenta"
yield (
event,
LogEvent(
role=step_type, content="No Violation", color="magenta"
),
)
else:
yield event, LogEvent(
role=step_type,
content=f"{violation.metadata} {violation.user_message}",
color="red",
yield (
event,
LogEvent(
role=step_type,
content=f"{violation.metadata} {violation.user_message}",
color="red",
),
)
# handle inference
@ -95,8 +108,11 @@ class EventLogger:
if stream:
if event_type == EventType.step_start.value:
# TODO: Currently this event is never received
yield event, LogEvent(
role=step_type, content="", end="", color="yellow"
yield (
event,
LogEvent(
role=step_type, content="", end="", color="yellow"
),
)
elif event_type == EventType.step_progress.value:
# HACK: if previous was not step/event was not inference's step_progress
@ -107,24 +123,34 @@ class EventLogger:
previous_event_type != EventType.step_progress.value
and previous_step_type != StepType.inference
):
yield event, LogEvent(
role=step_type, content="", end="", color="yellow"
yield (
event,
LogEvent(
role=step_type, content="", end="", color="yellow"
),
)
if event.payload.tool_call_delta:
if isinstance(event.payload.tool_call_delta.content, str):
yield event, LogEvent(
role=None,
content=event.payload.tool_call_delta.content,
end="",
color="cyan",
delta = event.payload.delta
if delta.type == "tool_call":
if delta.parse_status == ToolCallParseStatus.succeeded:
yield (
event,
LogEvent(
role=None,
content=delta.content,
end="",
color="cyan",
),
)
else:
yield event, LogEvent(
role=None,
content=event.payload.text_delta,
end="",
color="yellow",
yield (
event,
LogEvent(
role=None,
content=delta.text,
end="",
color="yellow",
),
)
else:
# step_complete
@ -140,10 +166,13 @@ class EventLogger:
)
else:
content = response.content
yield event, LogEvent(
role=step_type,
content=content,
color="yellow",
yield (
event,
LogEvent(
role=step_type,
content=content,
color="yellow",
),
)
# handle tool_execution
@ -155,16 +184,22 @@ class EventLogger:
):
details = event.payload.step_details
for t in details.tool_calls:
yield event, LogEvent(
role=step_type,
content=f"Tool:{t.tool_name} Args:{t.arguments}",
color="green",
yield (
event,
LogEvent(
role=step_type,
content=f"Tool:{t.tool_name} Args:{t.arguments}",
color="green",
),
)
for r in details.tool_responses:
yield event, LogEvent(
role=step_type,
content=f"Tool:{r.tool_name} Response:{r.content}",
color="green",
yield (
event,
LogEvent(
role=step_type,
content=f"Tool:{r.tool_name} Response:{r.content}",
color="green",
),
)
if (
@ -172,15 +207,16 @@ class EventLogger:
and event_type == EventType.step_complete.value
):
details = event.payload.step_details
inserted_context = interleaved_text_media_as_str(
details.inserted_context
)
inserted_context = interleaved_content_as_str(details.inserted_context)
content = f"fetched {len(inserted_context)} bytes from {details.memory_bank_ids}"
yield event, LogEvent(
role=step_type,
content=content,
color="cyan",
yield (
event,
LogEvent(
role=step_type,
content=content,
color="cyan",
),
)
previous_event_type = event_type

View file

@ -5,10 +5,12 @@
# the root directory of this source tree.
import base64
from enum import Enum
from typing import Annotated, List, Literal, Optional, Union
from llama_models.schema_utils import json_schema_type, register_schema
from llama_models.llama3.api.datatypes import ToolCall
from llama_models.schema_utils import json_schema_type, register_schema
from pydantic import BaseModel, Field, field_serializer, model_validator
@ -60,3 +62,42 @@ InterleavedContent = register_schema(
Union[str, InterleavedContentItem, List[InterleavedContentItem]],
name="InterleavedContent",
)
class TextDelta(BaseModel):
type: Literal["text"] = "text"
text: str
class ImageDelta(BaseModel):
type: Literal["image"] = "image"
data: bytes
@json_schema_type
class ToolCallParseStatus(Enum):
started = "started"
in_progress = "in_progress"
failed = "failed"
succeeded = "succeeded"
@json_schema_type
class ToolCallDelta(BaseModel):
type: Literal["tool_call"] = "tool_call"
# you either send an in-progress tool call so the client can stream a long
# code generation or you send the final parsed tool call at the end of the
# stream
content: Union[str, ToolCall]
parse_status: ToolCallParseStatus
# streaming completions send a stream of ContentDeltas
ContentDelta = register_schema(
Annotated[
Union[TextDelta, ImageDelta, ToolCallDelta],
Field(discriminator="type"),
],
name="ContentDelta",
)

View file

@ -29,7 +29,7 @@ from llama_models.schema_utils import json_schema_type, register_schema, webmeth
from pydantic import BaseModel, Field, field_validator
from typing_extensions import Annotated
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent
from llama_stack.apis.models import Model
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@ -147,26 +147,12 @@ class ChatCompletionResponseEventType(Enum):
progress = "progress"
@json_schema_type
class ToolCallParseStatus(Enum):
started = "started"
in_progress = "in_progress"
failure = "failure"
success = "success"
@json_schema_type
class ToolCallDelta(BaseModel):
content: Union[str, ToolCall]
parse_status: ToolCallParseStatus
@json_schema_type
class ChatCompletionResponseEvent(BaseModel):
"""Chat completion response event."""
event_type: ChatCompletionResponseEventType
delta: Union[str, ToolCallDelta]
delta: ContentDelta
logprobs: Optional[List[TokenLogProbs]] = None
stop_reason: Optional[StopReason] = None

View file

@ -4,9 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import importlib.resources
import os
import shutil
from functools import lru_cache
@ -14,14 +12,12 @@ from pathlib import Path
from typing import List, Optional
from llama_stack.cli.subcommand import Subcommand
from llama_stack.distribution.datatypes import (
BuildConfig,
DistributionSpec,
Provider,
StackRunConfig,
)
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.resolver import InvalidProviderError
from llama_stack.distribution.utils.dynamic import instantiate_class_type
@ -296,6 +292,7 @@ class StackBuild(Subcommand):
/ f"templates/{template_name}/run.yaml"
)
with importlib.resources.as_file(template_path) as path:
run_config_file = build_dir / f"{build_config.name}-run.yaml"
shutil.copy(path, run_config_file)
# Find all ${env.VARIABLE} patterns
cprint("Build Successful!", color="green")

View file

@ -9,12 +9,10 @@ import inspect
import json
import logging
import os
import queue
import threading
from concurrent.futures import ThreadPoolExecutor
from enum import Enum
from pathlib import Path
from typing import Any, Generator, get_args, get_origin, Optional, TypeVar
from typing import Any, get_args, get_origin, Optional, TypeVar
import httpx
import yaml
@ -64,71 +62,6 @@ def in_notebook():
return True
def stream_across_asyncio_run_boundary(
async_gen_maker,
pool_executor: ThreadPoolExecutor,
path: Optional[str] = None,
provider_data: Optional[dict[str, Any]] = None,
) -> Generator[T, None, None]:
result_queue = queue.Queue()
stop_event = threading.Event()
async def consumer():
# make sure we make the generator in the event loop context
gen = await async_gen_maker()
await start_trace(path, {"__location__": "library_client"})
if provider_data:
set_request_provider_data(
{"X-LlamaStack-Provider-Data": json.dumps(provider_data)}
)
try:
async for item in await gen:
result_queue.put(item)
except Exception as e:
print(f"Error in generator {e}")
result_queue.put(e)
except asyncio.CancelledError:
return
finally:
result_queue.put(StopIteration)
stop_event.set()
await end_trace()
def run_async():
# Run our own loop to avoid double async generator cleanup which is done
# by asyncio.run()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
task = loop.create_task(consumer())
loop.run_until_complete(task)
finally:
# Handle pending tasks like a generator's athrow()
pending = asyncio.all_tasks(loop)
if pending:
loop.run_until_complete(
asyncio.gather(*pending, return_exceptions=True)
)
loop.close()
future = pool_executor.submit(run_async)
try:
# yield results as they come in
while not stop_event.is_set() or not result_queue.empty():
try:
item = result_queue.get(timeout=0.1)
if item is StopIteration:
break
if isinstance(item, Exception):
raise item
yield item
except queue.Empty:
continue
finally:
future.result()
def convert_pydantic_to_json_value(value: Any) -> Any:
if isinstance(value, Enum):
return value.value
@ -184,7 +117,7 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
):
super().__init__()
self.async_client = AsyncLlamaStackAsLibraryClient(
config_path_or_template_name, custom_provider_registry
config_path_or_template_name, custom_provider_registry, provider_data
)
self.pool_executor = ThreadPoolExecutor(max_workers=4)
self.skip_logger_removal = skip_logger_removal
@ -210,39 +143,30 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
root_logger.removeHandler(handler)
print(f"Removed handler {handler.__class__.__name__} from root logger")
def _get_path(
self,
cast_to: Any,
options: Any,
*,
stream=False,
stream_cls=None,
):
return options.url
def request(self, *args, **kwargs):
path = self._get_path(*args, **kwargs)
if kwargs.get("stream"):
return stream_across_asyncio_run_boundary(
lambda: self.async_client.request(*args, **kwargs),
self.pool_executor,
path=path,
provider_data=self.provider_data,
)
else:
# NOTE: We are using AsyncLlamaStackClient under the hood
# A new event loop is needed to convert the AsyncStream
# from async client into SyncStream return type for streaming
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
async def _traced_request():
if self.provider_data:
set_request_provider_data(
{"X-LlamaStack-Provider-Data": json.dumps(self.provider_data)}
)
await start_trace(path, {"__location__": "library_client"})
def sync_generator():
try:
return await self.async_client.request(*args, **kwargs)
async_stream = loop.run_until_complete(
self.async_client.request(*args, **kwargs)
)
while True:
chunk = loop.run_until_complete(async_stream.__anext__())
yield chunk
except StopAsyncIteration:
pass
finally:
await end_trace()
loop.close()
return asyncio.run(_traced_request())
return sync_generator()
else:
return asyncio.run(self.async_client.request(*args, **kwargs))
class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
@ -250,9 +174,9 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
self,
config_path_or_template_name: str,
custom_provider_registry: Optional[ProviderRegistry] = None,
provider_data: Optional[dict[str, Any]] = None,
):
super().__init__()
# when using the library client, we should not log to console since many
# of our logs are intended for server-side usage
current_sinks = os.environ.get("TELEMETRY_SINKS", "sqlite").split(",")
@ -273,6 +197,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
self.config_path_or_template_name = config_path_or_template_name
self.config = config
self.custom_provider_registry = custom_provider_registry
self.provider_data = provider_data
async def initialize(self):
try:
@ -329,17 +254,24 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
if not self.endpoint_impls:
raise ValueError("Client not initialized")
if self.provider_data:
set_request_provider_data(
{"X-LlamaStack-Provider-Data": json.dumps(self.provider_data)}
)
await start_trace(options.url, {"__location__": "library_client"})
if stream:
return self._call_streaming(
response = await self._call_streaming(
cast_to=cast_to,
options=options,
stream_cls=stream_cls,
)
else:
return await self._call_non_streaming(
response = await self._call_non_streaming(
cast_to=cast_to,
options=options,
)
await end_trace()
return response
async def _call_non_streaming(
self,

View file

@ -35,7 +35,7 @@ class DistributionRegistry(Protocol):
REGISTER_PREFIX = "distributions:registry"
KEY_VERSION = "v4"
KEY_VERSION = "v5"
KEY_FORMAT = f"{REGISTER_PREFIX}:{KEY_VERSION}::" + "{type}:{identifier}"

View file

@ -40,7 +40,12 @@ from llama_stack.apis.agents import (
ToolExecutionStep,
Turn,
)
from llama_stack.apis.common.content_types import TextContentItem, URL
from llama_stack.apis.common.content_types import (
TextContentItem,
ToolCallDelta,
ToolCallParseStatus,
URL,
)
from llama_stack.apis.inference import (
ChatCompletionResponseEventType,
CompletionMessage,
@ -49,8 +54,6 @@ from llama_stack.apis.inference import (
SamplingParams,
StopReason,
SystemMessage,
ToolCallDelta,
ToolCallParseStatus,
ToolDefinition,
ToolResponse,
ToolResponseMessage,
@ -411,8 +414,8 @@ class ChatAgent(ShieldRunnerMixin):
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
tool_call_delta=ToolCallDelta(
parse_status=ToolCallParseStatus.success,
delta=ToolCallDelta(
parse_status=ToolCallParseStatus.succeeded,
content=ToolCall(
call_id="",
tool_name=MEMORY_QUERY_TOOL,
@ -507,8 +510,8 @@ class ChatAgent(ShieldRunnerMixin):
continue
delta = event.delta
if isinstance(delta, ToolCallDelta):
if delta.parse_status == ToolCallParseStatus.success:
if delta.type == "tool_call":
if delta.parse_status == ToolCallParseStatus.succeeded:
tool_calls.append(delta.content)
if stream:
yield AgentTurnResponseStreamChunk(
@ -516,21 +519,20 @@ class ChatAgent(ShieldRunnerMixin):
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.inference.value,
step_id=step_id,
text_delta="",
tool_call_delta=delta,
delta=delta,
)
)
)
elif isinstance(delta, str):
content += delta
elif delta.type == "text":
content += delta.text
if stream and event.stop_reason is None:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.inference.value,
step_id=step_id,
text_delta=event.delta,
delta=delta,
)
)
)

View file

@ -16,6 +16,11 @@ from llama_models.llama3.api.datatypes import (
)
from llama_models.sku_list import resolve_model
from llama_stack.apis.common.content_types import (
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
@ -32,8 +37,6 @@ from llama_stack.apis.inference import (
Message,
ResponseFormat,
TokenLogProbs,
ToolCallDelta,
ToolCallParseStatus,
ToolChoice,
)
from llama_stack.apis.models import Model, ModelType
@ -190,14 +193,14 @@ class MetaReferenceInferenceImpl(
]
yield CompletionResponseStreamChunk(
delta=text,
delta=TextDelta(text=text),
stop_reason=stop_reason,
logprobs=logprobs if request.logprobs else None,
)
if stop_reason is None:
yield CompletionResponseStreamChunk(
delta="",
delta=TextDelta(text=""),
stop_reason=StopReason.out_of_tokens,
)
@ -352,7 +355,7 @@ class MetaReferenceInferenceImpl(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
delta=TextDelta(text=""),
)
)
@ -392,7 +395,7 @@ class MetaReferenceInferenceImpl(
parse_status=ToolCallParseStatus.in_progress,
)
else:
delta = text
delta = TextDelta(text=text)
if stop_reason is None:
if request.logprobs:
@ -428,7 +431,7 @@ class MetaReferenceInferenceImpl(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
parse_status=ToolCallParseStatus.failed,
),
stop_reason=stop_reason,
)
@ -440,7 +443,7 @@ class MetaReferenceInferenceImpl(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
parse_status=ToolCallParseStatus.succeeded,
),
stop_reason=stop_reason,
)
@ -449,7 +452,7 @@ class MetaReferenceInferenceImpl(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
delta=TextDelta(text=""),
stop_reason=stop_reason,
)
)

View file

@ -30,13 +30,10 @@ from llama_stack.apis.telemetry import (
Trace,
UnstructuredLogEvent,
)
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.inline.telemetry.meta_reference.console_span_processor import (
ConsoleSpanProcessor,
)
from llama_stack.providers.inline.telemetry.meta_reference.sqlite_span_processor import (
SQLiteSpanProcessor,
)
@ -52,6 +49,7 @@ _GLOBAL_STORAGE = {
"up_down_counters": {},
}
_global_lock = threading.Lock()
_TRACER_PROVIDER = None
def string_to_trace_id(s: str) -> int:
@ -80,31 +78,34 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
}
)
provider = TracerProvider(resource=resource)
trace.set_tracer_provider(provider)
if TelemetrySink.OTEL in self.config.sinks:
otlp_exporter = OTLPSpanExporter(
endpoint=self.config.otel_endpoint,
)
span_processor = BatchSpanProcessor(otlp_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
metric_reader = PeriodicExportingMetricReader(
OTLPMetricExporter(
global _TRACER_PROVIDER
if _TRACER_PROVIDER is None:
provider = TracerProvider(resource=resource)
trace.set_tracer_provider(provider)
_TRACER_PROVIDER = provider
if TelemetrySink.OTEL in self.config.sinks:
otlp_exporter = OTLPSpanExporter(
endpoint=self.config.otel_endpoint,
)
)
metric_provider = MeterProvider(
resource=resource, metric_readers=[metric_reader]
)
metrics.set_meter_provider(metric_provider)
self.meter = metrics.get_meter(__name__)
if TelemetrySink.SQLITE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(
SQLiteSpanProcessor(self.config.sqlite_db_path)
)
self.trace_store = SQLiteTraceStore(self.config.sqlite_db_path)
if TelemetrySink.CONSOLE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor())
span_processor = BatchSpanProcessor(otlp_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
metric_reader = PeriodicExportingMetricReader(
OTLPMetricExporter(
endpoint=self.config.otel_endpoint,
)
)
metric_provider = MeterProvider(
resource=resource, metric_readers=[metric_reader]
)
metrics.set_meter_provider(metric_provider)
self.meter = metrics.get_meter(__name__)
if TelemetrySink.SQLITE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(
SQLiteSpanProcessor(self.config.sqlite_db_path)
)
self.trace_store = SQLiteTraceStore(self.config.sqlite_db_path)
if TelemetrySink.CONSOLE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor())
self._lock = _global_lock
async def initialize(self) -> None:

View file

@ -30,6 +30,11 @@ from groq.types.shared.function_definition import FunctionDefinition
from llama_models.llama3.api.datatypes import ToolParamDefinition
from llama_stack.apis.common.content_types import (
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
@ -40,8 +45,6 @@ from llama_stack.apis.inference import (
Message,
StopReason,
ToolCall,
ToolCallDelta,
ToolCallParseStatus,
ToolDefinition,
ToolPromptFormat,
)
@ -162,7 +165,7 @@ def convert_chat_completion_response(
def _map_finish_reason_to_stop_reason(
finish_reason: Literal["stop", "length", "tool_calls"]
finish_reason: Literal["stop", "length", "tool_calls"],
) -> StopReason:
"""
Convert a Groq chat completion finish_reason to a StopReason.
@ -185,7 +188,6 @@ def _map_finish_reason_to_stop_reason(
async def convert_chat_completion_response_stream(
stream: Stream[ChatCompletionChunk],
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
event_type = ChatCompletionResponseEventType.start
for chunk in stream:
choice = chunk.choices[0]
@ -194,7 +196,7 @@ async def convert_chat_completion_response_stream(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta=choice.delta.content or "",
delta=TextDelta(text=choice.delta.content or ""),
logprobs=None,
stop_reason=_map_finish_reason_to_stop_reason(choice.finish_reason),
)
@ -213,7 +215,7 @@ async def convert_chat_completion_response_stream(
event_type=event_type,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
parse_status=ToolCallParseStatus.succeeded,
),
)
)
@ -221,7 +223,7 @@ async def convert_chat_completion_response_stream(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=event_type,
delta=choice.delta.content or "",
delta=TextDelta(text=choice.delta.content or ""),
logprobs=None,
)
)

View file

@ -34,6 +34,11 @@ from openai.types.chat.chat_completion_message_tool_call_param import (
from openai.types.completion import Completion as OpenAICompletion
from openai.types.completion_choice import Logprobs as OpenAICompletionLogprobs
from llama_stack.apis.common.content_types import (
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
@ -48,8 +53,6 @@ from llama_stack.apis.inference import (
Message,
SystemMessage,
TokenLogProbs,
ToolCallDelta,
ToolCallParseStatus,
ToolResponseMessage,
UserMessage,
)
@ -432,69 +435,6 @@ async def convert_openai_chat_completion_stream(
"""
Convert a stream of OpenAI chat completion chunks into a stream
of ChatCompletionResponseStreamChunk.
OpenAI ChatCompletionChunk:
choices: List[Choice]
OpenAI Choice: # different from the non-streamed Choice
delta: ChoiceDelta
finish_reason: Optional[Literal["stop", "length", "tool_calls", "content_filter", "function_call"]]
logprobs: Optional[ChoiceLogprobs]
OpenAI ChoiceDelta:
content: Optional[str]
role: Optional[Literal["system", "user", "assistant", "tool"]]
tool_calls: Optional[List[ChoiceDeltaToolCall]]
OpenAI ChoiceDeltaToolCall:
index: int
id: Optional[str]
function: Optional[ChoiceDeltaToolCallFunction]
type: Optional[Literal["function"]]
OpenAI ChoiceDeltaToolCallFunction:
name: Optional[str]
arguments: Optional[str]
->
ChatCompletionResponseStreamChunk:
event: ChatCompletionResponseEvent
ChatCompletionResponseEvent:
event_type: ChatCompletionResponseEventType
delta: Union[str, ToolCallDelta]
logprobs: Optional[List[TokenLogProbs]]
stop_reason: Optional[StopReason]
ChatCompletionResponseEventType:
start = "start"
progress = "progress"
complete = "complete"
ToolCallDelta:
content: Union[str, ToolCall]
parse_status: ToolCallParseStatus
ToolCall:
call_id: str
tool_name: str
arguments: str
ToolCallParseStatus:
started = "started"
in_progress = "in_progress"
failure = "failure"
success = "success"
TokenLogProbs:
logprobs_by_token: Dict[str, float]
- token, logprob
StopReason:
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
# generate a stream of ChatCompletionResponseEventType: start -> progress -> progress -> ...
@ -543,7 +483,7 @@ async def convert_openai_chat_completion_stream(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=next(event_type),
delta=choice.delta.content,
delta=TextDelta(text=choice.delta.content),
logprobs=_convert_openai_logprobs(choice.logprobs),
)
)
@ -561,7 +501,7 @@ async def convert_openai_chat_completion_stream(
event_type=next(event_type),
delta=ToolCallDelta(
content=_convert_openai_tool_calls(choice.delta.tool_calls)[0],
parse_status=ToolCallParseStatus.success,
parse_status=ToolCallParseStatus.succeeded,
),
logprobs=_convert_openai_logprobs(choice.logprobs),
)
@ -570,7 +510,7 @@ async def convert_openai_chat_completion_stream(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=next(event_type),
delta=choice.delta.content or "", # content is not optional
delta=TextDelta(text=choice.delta.content or ""),
logprobs=_convert_openai_logprobs(choice.logprobs),
)
)
@ -578,7 +518,7 @@ async def convert_openai_chat_completion_stream(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
delta=TextDelta(text=""),
stop_reason=stop_reason,
)
)
@ -653,18 +593,6 @@ def _convert_openai_completion_logprobs(
) -> Optional[List[TokenLogProbs]]:
"""
Convert an OpenAI CompletionLogprobs into a list of TokenLogProbs.
OpenAI CompletionLogprobs:
text_offset: Optional[List[int]]
token_logprobs: Optional[List[float]]
tokens: Optional[List[str]]
top_logprobs: Optional[List[Dict[str, float]]]
->
TokenLogProbs:
logprobs_by_token: Dict[str, float]
- token, logprob
"""
if not logprobs:
return None
@ -679,28 +607,6 @@ def convert_openai_completion_choice(
) -> CompletionResponse:
"""
Convert an OpenAI Completion Choice into a CompletionResponse.
OpenAI Completion Choice:
text: str
finish_reason: str
logprobs: Optional[ChoiceLogprobs]
->
CompletionResponse:
completion_message: CompletionMessage
logprobs: Optional[List[TokenLogProbs]]
CompletionMessage:
role: Literal["assistant"]
content: str | ImageMedia | List[str | ImageMedia]
stop_reason: StopReason
tool_calls: List[ToolCall]
class StopReason(Enum):
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
return CompletionResponse(
content=choice.text,
@ -715,32 +621,11 @@ async def convert_openai_completion_stream(
"""
Convert a stream of OpenAI Completions into a stream
of ChatCompletionResponseStreamChunks.
OpenAI Completion:
id: str
choices: List[OpenAICompletionChoice]
created: int
model: str
system_fingerprint: Optional[str]
usage: Optional[OpenAICompletionUsage]
OpenAI CompletionChoice:
finish_reason: str
index: int
logprobs: Optional[OpenAILogprobs]
text: str
->
CompletionResponseStreamChunk:
delta: str
stop_reason: Optional[StopReason]
logprobs: Optional[List[TokenLogProbs]]
"""
async for chunk in stream:
choice = chunk.choices[0]
yield CompletionResponseStreamChunk(
delta=choice.text,
delta=TextDelta(text=choice.text),
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
)

View file

@ -18,6 +18,7 @@ from llama_models.llama3.api.datatypes import (
from pydantic import BaseModel, ValidationError
from llama_stack.apis.common.content_types import ToolCallParseStatus
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseEventType,
@ -27,8 +28,6 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
LogProbConfig,
SystemMessage,
ToolCallDelta,
ToolCallParseStatus,
ToolChoice,
UserMessage,
)
@ -196,7 +195,9 @@ class TestInference:
1 <= len(chunks) <= 6
) # why 6 and not 5? the response may have an extra closing chunk, e.g. for usage or stop_reason
for chunk in chunks:
if chunk.delta: # if there's a token, we expect logprobs
if (
chunk.delta.type == "text" and chunk.delta.text
): # if there's a token, we expect logprobs
assert chunk.logprobs, "Logprobs should not be empty"
assert all(
len(logprob.logprobs_by_token) == 3 for logprob in chunk.logprobs
@ -463,7 +464,7 @@ class TestInference:
if "Llama3.1" in inference_model:
assert all(
isinstance(chunk.event.delta, ToolCallDelta)
chunk.event.delta.type == "tool_call"
for chunk in grouped[ChatCompletionResponseEventType.progress]
)
first = grouped[ChatCompletionResponseEventType.progress][0]
@ -474,8 +475,8 @@ class TestInference:
last = grouped[ChatCompletionResponseEventType.progress][-1]
# assert last.event.stop_reason == expected_stop_reason
assert last.event.delta.parse_status == ToolCallParseStatus.success
assert isinstance(last.event.delta.content, ToolCall)
assert last.event.delta.parse_status == ToolCallParseStatus.succeeded
assert last.event.delta.content.type == "tool_call"
call = last.event.delta.content
assert call.tool_name == "get_weather"

View file

@ -11,7 +11,13 @@ from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import SamplingParams, StopReason
from pydantic import BaseModel
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
from llama_stack.apis.common.content_types import (
ImageContentItem,
TextContentItem,
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionResponse,
@ -22,8 +28,6 @@ from llama_stack.apis.inference import (
CompletionResponse,
CompletionResponseStreamChunk,
Message,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
@ -160,7 +164,7 @@ async def process_chat_completion_stream_response(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
delta=TextDelta(text=""),
)
)
@ -227,7 +231,7 @@ async def process_chat_completion_stream_response(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
delta=TextDelta(text=text),
stop_reason=stop_reason,
)
)
@ -241,7 +245,7 @@ async def process_chat_completion_stream_response(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
parse_status=ToolCallParseStatus.failed,
),
stop_reason=stop_reason,
)
@ -253,7 +257,7 @@ async def process_chat_completion_stream_response(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
parse_status=ToolCallParseStatus.succeeded,
),
stop_reason=stop_reason,
)
@ -262,7 +266,7 @@ async def process_chat_completion_stream_response(
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
delta=TextDelta(text=""),
stop_reason=stop_reason,
)
)

View file

@ -265,6 +265,7 @@ def chat_completion_request_to_messages(
For eg. for llama_3_1, add system message with the appropriate tools or
add user messsage for custom tools, etc.
"""
assert llama_model is not None, "llama_model is required"
model = resolve_model(llama_model)
if model is None:
log.error(f"Could not resolve model {llama_model}")

View file

@ -127,7 +127,8 @@ class TraceContext:
def setup_logger(api: Telemetry, level: int = logging.INFO):
global BACKGROUND_LOGGER
BACKGROUND_LOGGER = BackgroundLogger(api)
if BACKGROUND_LOGGER is None:
BACKGROUND_LOGGER = BackgroundLogger(api)
logger = logging.getLogger()
logger.setLevel(level)
logger.addHandler(TelemetryHandler())

View file

@ -12,6 +12,11 @@ from llama_stack.providers.tests.env import get_env_or_fail
from llama_stack_client import LlamaStackClient
def pytest_configure(config):
config.option.tbstyle = "short"
config.option.disable_warnings = True
@pytest.fixture(scope="session")
def provider_data():
# check env for tavily secret, brave secret and inject all into provider data
@ -29,6 +34,7 @@ def llama_stack_client(provider_data):
client = LlamaStackAsLibraryClient(
get_env_or_fail("LLAMA_STACK_CONFIG"),
provider_data=provider_data,
skip_logger_removal=True,
)
client.initialize()
elif os.environ.get("LLAMA_STACK_BASE_URL"):

View file

@ -6,9 +6,9 @@
import pytest
from llama_stack_client.lib.inference.event_logger import EventLogger
from pydantic import BaseModel
PROVIDER_TOOL_PROMPT_FORMAT = {
"remote::ollama": "python_list",
"remote::together": "json",
@ -39,7 +39,7 @@ def text_model_id(llama_stack_client):
available_models = [
model.identifier
for model in llama_stack_client.models.list()
if model.identifier.startswith("meta-llama")
if model.identifier.startswith("meta-llama") and "405" not in model.identifier
]
assert len(available_models) > 0
return available_models[0]
@ -208,12 +208,9 @@ def test_text_chat_completion_streaming(
stream=True,
)
streamed_content = [
str(log.content.lower().strip())
for log in EventLogger().log(response)
if log is not None
str(chunk.event.delta.text.lower().strip()) for chunk in response
]
assert len(streamed_content) > 0
assert "assistant>" in streamed_content[0]
assert expected.lower() in "".join(streamed_content)
@ -250,17 +247,16 @@ def test_text_chat_completion_with_tool_calling_and_non_streaming(
def extract_tool_invocation_content(response):
text_content: str = ""
tool_invocation_content: str = ""
for log in EventLogger().log(response):
if log is None:
continue
if isinstance(log.content, str):
text_content += log.content
elif isinstance(log.content, object):
if isinstance(log.content.content, str):
continue
elif isinstance(log.content.content, object):
tool_invocation_content += f"[{log.content.content.tool_name}, {log.content.content.arguments}]"
for chunk in response:
delta = chunk.event.delta
if delta.type == "text":
text_content += delta.text
elif delta.type == "tool_call":
if isinstance(delta.content, str):
tool_invocation_content += delta.content
else:
call = delta.content
tool_invocation_content += f"[{call.tool_name}, {call.arguments}]"
return text_content, tool_invocation_content
@ -280,7 +276,6 @@ def test_text_chat_completion_with_tool_calling_and_streaming(
)
text_content, tool_invocation_content = extract_tool_invocation_content(response)
assert "Assistant>" in text_content
assert tool_invocation_content == "[get_weather, {'location': 'San Francisco, CA'}]"
@ -368,10 +363,7 @@ def test_image_chat_completion_streaming(llama_stack_client, vision_model_id):
stream=True,
)
streamed_content = [
str(log.content.lower().strip())
for log in EventLogger().log(response)
if log is not None
str(chunk.event.delta.text.lower().strip()) for chunk in response
]
assert len(streamed_content) > 0
assert "assistant>" in streamed_content[0]
assert any(expected in streamed_content for expected in {"dog", "puppy", "pup"})