mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-04 10:10:36 +00:00
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?
This is a long-pending change and particularly important to get done
now.
Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.
See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.
## Test Plan
```bash
cd llama_stack/providers/tests
pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
--env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar
pytest -s -v -k fireworks agents/test_agents.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
```
Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py
# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
This commit is contained in:
parent
10eb31badf
commit
8de8eb03c8
66 changed files with 1344 additions and 1801 deletions
|
|
@ -24,6 +24,13 @@ from ..conftest import ProviderFixture, remote_stack_fixture
|
|||
from ..env import get_env_or_fail
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def embedding_model(request):
|
||||
if hasattr(request, "param"):
|
||||
return request.param
|
||||
return request.config.getoption("--embedding-model", None)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def memory_remote() -> ProviderFixture:
|
||||
return remote_stack_fixture()
|
||||
|
|
@ -107,7 +114,7 @@ MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"]
|
|||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def memory_stack(inference_model, request):
|
||||
async def memory_stack(embedding_model, request):
|
||||
fixture_dict = request.param
|
||||
|
||||
providers = {}
|
||||
|
|
@ -124,7 +131,7 @@ async def memory_stack(inference_model, request):
|
|||
provider_data,
|
||||
models=[
|
||||
ModelInput(
|
||||
model_id=inference_model,
|
||||
model_id=embedding_model,
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": get_env_or_fail("EMBEDDING_DIMENSION"),
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue