mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-16 22:02:37 +00:00
rework(telemetry): remove legacy telemetry api
This commit is contained in:
parent
0c843ec87f
commit
8e29d0eb79
13 changed files with 397 additions and 1645 deletions
|
|
@ -1,56 +0,0 @@
|
|||
{
|
||||
"request": {
|
||||
"method": "POST",
|
||||
"url": "http://localhost:11434/v1/v1/completions",
|
||||
"headers": {},
|
||||
"body": {
|
||||
"model": "llama3.2:3b-instruct-fp16",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Test OpenAI telemetry creation"
|
||||
}
|
||||
],
|
||||
"stream": false
|
||||
},
|
||||
"endpoint": "/v1/completions",
|
||||
"model": "llama3.2:3b-instruct-fp16"
|
||||
},
|
||||
"response": {
|
||||
"body": {
|
||||
"__type__": "openai.types.chat.chat_completion.ChatCompletion",
|
||||
"__data__": {
|
||||
"id": "rec-67198cbad48f",
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "stop",
|
||||
"index": 0,
|
||||
"logprobs": null,
|
||||
"message": {
|
||||
"content": "import openai\n\n# You can replace this with your own API key\nAPI_KEY = \"your_openai_api_key\"\n\n# Create an OpenAI instance\nopenai_client = openai.Client(api_key=API_KEY)\n\n# Test the telemetry endpoint by creating a new telemetry instance\ntelemetry = openai_client.create_telemetry()\n\nprint(telemetry)",
|
||||
"refusal": null,
|
||||
"role": "assistant",
|
||||
"annotations": null,
|
||||
"audio": null,
|
||||
"function_call": null,
|
||||
"tool_calls": null
|
||||
}
|
||||
}
|
||||
],
|
||||
"created": 0,
|
||||
"model": "llama3.2:3b-instruct-fp16",
|
||||
"object": "chat.completion",
|
||||
"service_tier": null,
|
||||
"system_fingerprint": "fp_ollama",
|
||||
"usage": {
|
||||
"completion_tokens": 72,
|
||||
"prompt_tokens": 30,
|
||||
"total_tokens": 102,
|
||||
"completion_tokens_details": null,
|
||||
"prompt_tokens_details": null
|
||||
}
|
||||
}
|
||||
},
|
||||
"is_streaming": false
|
||||
}
|
||||
}
|
||||
|
|
@ -1,194 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import time
|
||||
from datetime import UTC, datetime
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def setup_openai_telemetry_data(llama_stack_client, text_model_id):
|
||||
"""Setup fixture that creates telemetry data specifically for OpenAI completions testing."""
|
||||
|
||||
# Create OpenAI completion traces
|
||||
for i in range(3):
|
||||
llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"Test trace openai {i}",
|
||||
}
|
||||
],
|
||||
# stream=False to always capture Metrics.
|
||||
stream=False,
|
||||
)
|
||||
|
||||
# Create additional OpenAI completion traces with different parameters
|
||||
for i in range(2):
|
||||
llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"Test trace openai with temperature {i}",
|
||||
}
|
||||
],
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
while time.time() - start_time < 30:
|
||||
traces = llama_stack_client.telemetry.query_traces(limit=10)
|
||||
if len(traces) >= 5: # 5 OpenAI completion traces
|
||||
break
|
||||
time.sleep(0.1)
|
||||
|
||||
if len(traces) < 5:
|
||||
pytest.fail(
|
||||
f"Failed to create sufficient OpenAI completion telemetry data after 30s. Got {len(traces)} traces."
|
||||
)
|
||||
|
||||
yield
|
||||
|
||||
|
||||
def test_openai_traces_basic(llama_stack_client):
|
||||
"""Test basic trace querying functionality for OpenAI completions."""
|
||||
all_traces = llama_stack_client.telemetry.query_traces(limit=10)
|
||||
|
||||
assert isinstance(all_traces, list), "Should return a list of traces"
|
||||
assert len(all_traces) >= 5, "Should have at least 5 traces from OpenAI setup"
|
||||
|
||||
# Verify trace structure and data quality
|
||||
first_trace = all_traces[0]
|
||||
assert hasattr(first_trace, "trace_id"), "Trace should have trace_id"
|
||||
assert hasattr(first_trace, "start_time"), "Trace should have start_time"
|
||||
assert hasattr(first_trace, "root_span_id"), "Trace should have root_span_id"
|
||||
|
||||
# Validate trace_id is a valid UUID format
|
||||
assert isinstance(first_trace.trace_id, str) and len(first_trace.trace_id) > 0, (
|
||||
"trace_id should be non-empty string"
|
||||
)
|
||||
|
||||
# Validate start_time format and not in the future
|
||||
now = datetime.now(UTC)
|
||||
if isinstance(first_trace.start_time, str):
|
||||
trace_time = datetime.fromisoformat(first_trace.start_time.replace("Z", "+00:00"))
|
||||
else:
|
||||
# start_time is already a datetime object
|
||||
trace_time = first_trace.start_time
|
||||
if trace_time.tzinfo is None:
|
||||
trace_time = trace_time.replace(tzinfo=UTC)
|
||||
|
||||
# Ensure trace time is not in the future
|
||||
time_diff = (now - trace_time).total_seconds()
|
||||
assert time_diff >= 0, f"Trace start_time should not be in the future, got {time_diff}s"
|
||||
|
||||
# Validate root_span_id exists and is non-empty
|
||||
assert isinstance(first_trace.root_span_id, str) and len(first_trace.root_span_id) > 0, (
|
||||
"root_span_id should be non-empty string"
|
||||
)
|
||||
|
||||
# Test querying specific trace by ID
|
||||
specific_trace = llama_stack_client.telemetry.get_trace(trace_id=first_trace.trace_id)
|
||||
assert specific_trace.trace_id == first_trace.trace_id, "Retrieved trace should match requested ID"
|
||||
assert specific_trace.start_time == first_trace.start_time, "Retrieved trace should have same start_time"
|
||||
assert specific_trace.root_span_id == first_trace.root_span_id, "Retrieved trace should have same root_span_id"
|
||||
|
||||
# Test pagination with proper validation
|
||||
recent_traces = llama_stack_client.telemetry.query_traces(limit=3, offset=0)
|
||||
assert len(recent_traces) <= 3, "Should return at most 3 traces when limit=3"
|
||||
assert len(recent_traces) >= 1, "Should return at least 1 trace"
|
||||
|
||||
# Verify all traces have required fields
|
||||
for trace in recent_traces:
|
||||
assert hasattr(trace, "trace_id") and trace.trace_id, "Each trace should have non-empty trace_id"
|
||||
assert hasattr(trace, "start_time") and trace.start_time, "Each trace should have non-empty start_time"
|
||||
assert hasattr(trace, "root_span_id") and trace.root_span_id, "Each trace should have non-empty root_span_id"
|
||||
|
||||
|
||||
def test_openai_spans_basic(llama_stack_client):
|
||||
"""Test basic span querying functionality for OpenAI completions."""
|
||||
spans = llama_stack_client.telemetry.query_spans(attribute_filters=[], attributes_to_return=[])
|
||||
|
||||
assert isinstance(spans, list), "Should return a list of spans"
|
||||
assert len(spans) >= 1, "Should have at least one span from OpenAI setup"
|
||||
|
||||
# Verify span structure and data quality
|
||||
first_span = spans[0]
|
||||
required_attrs = ["span_id", "name", "trace_id"]
|
||||
for attr in required_attrs:
|
||||
assert hasattr(first_span, attr), f"Span should have {attr} attribute"
|
||||
assert getattr(first_span, attr), f"Span {attr} should not be empty"
|
||||
|
||||
# Validate span data types and content
|
||||
assert isinstance(first_span.span_id, str) and len(first_span.span_id) > 0, "span_id should be non-empty string"
|
||||
assert isinstance(first_span.name, str) and len(first_span.name) > 0, "span name should be non-empty string"
|
||||
assert isinstance(first_span.trace_id, str) and len(first_span.trace_id) > 0, "trace_id should be non-empty string"
|
||||
|
||||
# Verify span belongs to a valid trace
|
||||
all_traces = llama_stack_client.telemetry.query_traces(limit=10)
|
||||
trace_ids = {t.trace_id for t in all_traces}
|
||||
if first_span.trace_id in trace_ids:
|
||||
trace = llama_stack_client.telemetry.get_trace(trace_id=first_span.trace_id)
|
||||
assert trace is not None, "Should be able to retrieve trace for valid trace_id"
|
||||
assert trace.trace_id == first_span.trace_id, "Trace ID should match span's trace_id"
|
||||
|
||||
# Test with span filtering and validate results
|
||||
filtered_spans = llama_stack_client.telemetry.query_spans(
|
||||
attribute_filters=[{"key": "name", "op": "eq", "value": first_span.name}],
|
||||
attributes_to_return=["name", "span_id"],
|
||||
)
|
||||
assert isinstance(filtered_spans, list), "Should return a list with span name filter"
|
||||
|
||||
# Validate filtered spans if filtering works
|
||||
if len(filtered_spans) > 0:
|
||||
for span in filtered_spans:
|
||||
assert hasattr(span, "name"), "Filtered spans should have name attribute"
|
||||
assert hasattr(span, "span_id"), "Filtered spans should have span_id attribute"
|
||||
assert span.name == first_span.name, "Filtered spans should match the filter criteria"
|
||||
assert isinstance(span.span_id, str) and len(span.span_id) > 0, "Filtered span_id should be valid"
|
||||
|
||||
# Test that all spans have consistent structure
|
||||
for span in spans:
|
||||
for attr in required_attrs:
|
||||
assert hasattr(span, attr) and getattr(span, attr), f"All spans should have non-empty {attr}"
|
||||
|
||||
|
||||
def test_openai_completion_creates_telemetry(llama_stack_client, text_model_id):
|
||||
"""Test that making OpenAI completion calls actually creates telemetry data."""
|
||||
|
||||
# Get initial trace count
|
||||
initial_traces = llama_stack_client.telemetry.query_traces(limit=20)
|
||||
initial_count = len(initial_traces)
|
||||
|
||||
# Make a new OpenAI completion call
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Test OpenAI telemetry creation"}],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
# Verify we got a response
|
||||
assert response is not None, "Should get a response from OpenAI completion"
|
||||
assert hasattr(response, "choices"), "Response should have choices"
|
||||
assert len(response.choices) > 0, "Response should have at least one choice"
|
||||
|
||||
# Wait for telemetry to be recorded
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < 30:
|
||||
final_traces = llama_stack_client.telemetry.query_traces(limit=20)
|
||||
final_count = len(final_traces)
|
||||
if final_count > initial_count:
|
||||
break
|
||||
time.sleep(0.1)
|
||||
|
||||
# Should have at least as many traces as before (might have more due to other activity)
|
||||
assert final_count >= initial_count, "Should have at least as many traces after OpenAI call"
|
||||
|
|
@ -1,187 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import time
|
||||
from datetime import UTC, datetime
|
||||
from uuid import uuid4
|
||||
|
||||
import pytest
|
||||
from llama_stack_client import Agent
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def setup_telemetry_data(llama_stack_client, text_model_id):
|
||||
"""Setup fixture that creates telemetry data before tests run."""
|
||||
agent = Agent(llama_stack_client, model=text_model_id, instructions="You are a helpful assistant")
|
||||
|
||||
session_id = agent.create_session(f"test-setup-session-{uuid4()}")
|
||||
|
||||
messages = [
|
||||
"What is 2 + 2?",
|
||||
"Tell me a short joke",
|
||||
]
|
||||
|
||||
for msg in messages:
|
||||
agent.create_turn(
|
||||
messages=[{"role": "user", "content": msg}],
|
||||
session_id=session_id,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
for i in range(2):
|
||||
llama_stack_client.chat.completions.create(
|
||||
model=text_model_id, messages=[{"role": "user", "content": f"Test trace {i}"}]
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
while time.time() - start_time < 30:
|
||||
traces = llama_stack_client.telemetry.query_traces(limit=10)
|
||||
if len(traces) >= 4:
|
||||
break
|
||||
time.sleep(0.1)
|
||||
|
||||
if len(traces) < 4:
|
||||
pytest.fail(f"Failed to create sufficient telemetry data after 30s. Got {len(traces)} traces.")
|
||||
|
||||
yield
|
||||
|
||||
|
||||
def test_query_traces_basic(llama_stack_client):
|
||||
"""Test basic trace querying functionality with proper data validation."""
|
||||
all_traces = llama_stack_client.telemetry.query_traces(limit=5)
|
||||
|
||||
assert isinstance(all_traces, list), "Should return a list of traces"
|
||||
assert len(all_traces) >= 4, "Should have at least 4 traces from setup"
|
||||
|
||||
# Verify trace structure and data quality
|
||||
first_trace = all_traces[0]
|
||||
assert hasattr(first_trace, "trace_id"), "Trace should have trace_id"
|
||||
assert hasattr(first_trace, "start_time"), "Trace should have start_time"
|
||||
assert hasattr(first_trace, "root_span_id"), "Trace should have root_span_id"
|
||||
|
||||
# Validate trace_id is a valid UUID format
|
||||
assert isinstance(first_trace.trace_id, str) and len(first_trace.trace_id) > 0, (
|
||||
"trace_id should be non-empty string"
|
||||
)
|
||||
|
||||
# Validate start_time format and not in the future
|
||||
now = datetime.now(UTC)
|
||||
if isinstance(first_trace.start_time, str):
|
||||
trace_time = datetime.fromisoformat(first_trace.start_time.replace("Z", "+00:00"))
|
||||
else:
|
||||
# start_time is already a datetime object
|
||||
trace_time = first_trace.start_time
|
||||
if trace_time.tzinfo is None:
|
||||
trace_time = trace_time.replace(tzinfo=UTC)
|
||||
|
||||
# Ensure trace time is not in the future (but allow any age in the past for persistent test data)
|
||||
time_diff = (now - trace_time).total_seconds()
|
||||
assert time_diff >= 0, f"Trace start_time should not be in the future, got {time_diff}s"
|
||||
|
||||
# Validate root_span_id exists and is non-empty
|
||||
assert isinstance(first_trace.root_span_id, str) and len(first_trace.root_span_id) > 0, (
|
||||
"root_span_id should be non-empty string"
|
||||
)
|
||||
|
||||
# Test querying specific trace by ID
|
||||
specific_trace = llama_stack_client.telemetry.get_trace(trace_id=first_trace.trace_id)
|
||||
assert specific_trace.trace_id == first_trace.trace_id, "Retrieved trace should match requested ID"
|
||||
assert specific_trace.start_time == first_trace.start_time, "Retrieved trace should have same start_time"
|
||||
assert specific_trace.root_span_id == first_trace.root_span_id, "Retrieved trace should have same root_span_id"
|
||||
|
||||
# Test pagination with proper validation
|
||||
recent_traces = llama_stack_client.telemetry.query_traces(limit=3, offset=0)
|
||||
assert len(recent_traces) <= 3, "Should return at most 3 traces when limit=3"
|
||||
assert len(recent_traces) >= 1, "Should return at least 1 trace"
|
||||
|
||||
# Verify all traces have required fields
|
||||
for trace in recent_traces:
|
||||
assert hasattr(trace, "trace_id") and trace.trace_id, "Each trace should have non-empty trace_id"
|
||||
assert hasattr(trace, "start_time") and trace.start_time, "Each trace should have non-empty start_time"
|
||||
assert hasattr(trace, "root_span_id") and trace.root_span_id, "Each trace should have non-empty root_span_id"
|
||||
|
||||
|
||||
def test_query_spans_basic(llama_stack_client):
|
||||
"""Test basic span querying functionality with proper validation."""
|
||||
spans = llama_stack_client.telemetry.query_spans(attribute_filters=[], attributes_to_return=[])
|
||||
|
||||
assert isinstance(spans, list), "Should return a list of spans"
|
||||
assert len(spans) >= 1, "Should have at least one span from setup"
|
||||
|
||||
# Verify span structure and data quality
|
||||
first_span = spans[0]
|
||||
required_attrs = ["span_id", "name", "trace_id"]
|
||||
for attr in required_attrs:
|
||||
assert hasattr(first_span, attr), f"Span should have {attr} attribute"
|
||||
assert getattr(first_span, attr), f"Span {attr} should not be empty"
|
||||
|
||||
# Validate span data types and content
|
||||
assert isinstance(first_span.span_id, str) and len(first_span.span_id) > 0, "span_id should be non-empty string"
|
||||
assert isinstance(first_span.name, str) and len(first_span.name) > 0, "span name should be non-empty string"
|
||||
assert isinstance(first_span.trace_id, str) and len(first_span.trace_id) > 0, "trace_id should be non-empty string"
|
||||
|
||||
# Verify span belongs to a valid trace (test with traces we know exist)
|
||||
all_traces = llama_stack_client.telemetry.query_traces(limit=10)
|
||||
trace_ids = {t.trace_id for t in all_traces}
|
||||
if first_span.trace_id in trace_ids:
|
||||
trace = llama_stack_client.telemetry.get_trace(trace_id=first_span.trace_id)
|
||||
assert trace is not None, "Should be able to retrieve trace for valid trace_id"
|
||||
assert trace.trace_id == first_span.trace_id, "Trace ID should match span's trace_id"
|
||||
|
||||
# Test with span filtering and validate results
|
||||
filtered_spans = llama_stack_client.telemetry.query_spans(
|
||||
attribute_filters=[{"key": "name", "op": "eq", "value": first_span.name}],
|
||||
attributes_to_return=["name", "span_id"],
|
||||
)
|
||||
assert isinstance(filtered_spans, list), "Should return a list with span name filter"
|
||||
|
||||
# Validate filtered spans if filtering works
|
||||
if len(filtered_spans) > 0:
|
||||
for span in filtered_spans:
|
||||
assert hasattr(span, "name"), "Filtered spans should have name attribute"
|
||||
assert hasattr(span, "span_id"), "Filtered spans should have span_id attribute"
|
||||
assert span.name == first_span.name, "Filtered spans should match the filter criteria"
|
||||
assert isinstance(span.span_id, str) and len(span.span_id) > 0, "Filtered span_id should be valid"
|
||||
|
||||
# Test that all spans have consistent structure
|
||||
for span in spans:
|
||||
for attr in required_attrs:
|
||||
assert hasattr(span, attr) and getattr(span, attr), f"All spans should have non-empty {attr}"
|
||||
|
||||
|
||||
def test_telemetry_pagination(llama_stack_client):
|
||||
"""Test pagination in telemetry queries."""
|
||||
# Get total count of traces
|
||||
all_traces = llama_stack_client.telemetry.query_traces(limit=20)
|
||||
total_count = len(all_traces)
|
||||
assert total_count >= 4, "Should have at least 4 traces from setup"
|
||||
|
||||
# Test trace pagination
|
||||
page1 = llama_stack_client.telemetry.query_traces(limit=2, offset=0)
|
||||
page2 = llama_stack_client.telemetry.query_traces(limit=2, offset=2)
|
||||
|
||||
assert len(page1) == 2, "First page should have exactly 2 traces"
|
||||
assert len(page2) >= 1, "Second page should have at least 1 trace"
|
||||
|
||||
# Verify no overlap between pages
|
||||
page1_ids = {t.trace_id for t in page1}
|
||||
page2_ids = {t.trace_id for t in page2}
|
||||
assert len(page1_ids.intersection(page2_ids)) == 0, "Pages should contain different traces"
|
||||
|
||||
# Test ordering
|
||||
ordered_traces = llama_stack_client.telemetry.query_traces(limit=5, order_by=["start_time"])
|
||||
assert len(ordered_traces) >= 4, "Should have at least 4 traces for ordering test"
|
||||
|
||||
# Verify ordering by start_time
|
||||
for i in range(len(ordered_traces) - 1):
|
||||
current_time = ordered_traces[i].start_time
|
||||
next_time = ordered_traces[i + 1].start_time
|
||||
assert current_time <= next_time, f"Traces should be ordered by start_time: {current_time} > {next_time}"
|
||||
|
||||
# Test limit behavior
|
||||
limited = llama_stack_client.telemetry.query_traces(limit=3)
|
||||
assert len(limited) == 3, "Should return exactly 3 traces when limit=3"
|
||||
|
|
@ -1,206 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import time
|
||||
from datetime import UTC, datetime, timedelta
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def setup_telemetry_metrics_data(openai_client, client_with_models, text_model_id):
|
||||
"""Setup fixture that creates telemetry metrics data before tests run."""
|
||||
|
||||
# Skip OpenAI tests if running in library mode
|
||||
if not hasattr(client_with_models, "base_url"):
|
||||
pytest.skip("OpenAI client tests not supported with library client")
|
||||
|
||||
prompt_tokens = []
|
||||
completion_tokens = []
|
||||
total_tokens = []
|
||||
|
||||
# Create OpenAI completions to generate metrics using the proper OpenAI client
|
||||
for i in range(5):
|
||||
response = openai_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": f"OpenAI test {i}"}],
|
||||
stream=False,
|
||||
)
|
||||
prompt_tokens.append(response.usage.prompt_tokens)
|
||||
completion_tokens.append(response.usage.completion_tokens)
|
||||
total_tokens.append(response.usage.total_tokens)
|
||||
|
||||
# Wait for metrics to be logged
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < 30:
|
||||
try:
|
||||
# Try to query metrics to see if they're available
|
||||
metrics_response = client_with_models.telemetry.query_metrics(
|
||||
metric_name="completion_tokens",
|
||||
start_time=int((datetime.now(UTC) - timedelta(minutes=5)).timestamp()),
|
||||
)
|
||||
if len(metrics_response[0].values) > 0:
|
||||
break
|
||||
except Exception:
|
||||
pass
|
||||
time.sleep(0.1)
|
||||
|
||||
# Return the token lists for use in tests
|
||||
return {"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": total_tokens}
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Skipping this test until client is regenerated")
|
||||
def test_query_metrics_prompt_tokens(client_with_models, text_model_id, setup_telemetry_metrics_data):
|
||||
"""Test that prompt_tokens metrics are queryable."""
|
||||
start_time = int((datetime.now(UTC) - timedelta(minutes=10)).timestamp())
|
||||
|
||||
response = client_with_models.telemetry.query_metrics(
|
||||
metric_name="prompt_tokens",
|
||||
start_time=start_time,
|
||||
)
|
||||
|
||||
assert isinstance(response, list)
|
||||
|
||||
assert isinstance(response[0].values, list), "Should return a list of metric series"
|
||||
|
||||
assert response[0].metric == "prompt_tokens"
|
||||
|
||||
# Use the actual values from setup instead of hardcoded values
|
||||
expected_values = setup_telemetry_metrics_data["prompt_tokens"]
|
||||
assert response[0].values[-1].value in expected_values, (
|
||||
f"Expected one of {expected_values}, got {response[0].values[-1].value}"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Skipping this test until client is regenerated")
|
||||
def test_query_metrics_completion_tokens(client_with_models, text_model_id, setup_telemetry_metrics_data):
|
||||
"""Test that completion_tokens metrics are queryable."""
|
||||
start_time = int((datetime.now(UTC) - timedelta(minutes=10)).timestamp())
|
||||
|
||||
response = client_with_models.telemetry.query_metrics(
|
||||
metric_name="completion_tokens",
|
||||
start_time=start_time,
|
||||
)
|
||||
|
||||
assert isinstance(response, list)
|
||||
|
||||
assert isinstance(response[0].values, list), "Should return a list of metric series"
|
||||
|
||||
assert response[0].metric == "completion_tokens"
|
||||
|
||||
# Use the actual values from setup instead of hardcoded values
|
||||
expected_values = setup_telemetry_metrics_data["completion_tokens"]
|
||||
assert response[0].values[-1].value in expected_values, (
|
||||
f"Expected one of {expected_values}, got {response[0].values[-1].value}"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Skipping this test until client is regenerated")
|
||||
def test_query_metrics_total_tokens(client_with_models, text_model_id, setup_telemetry_metrics_data):
|
||||
"""Test that total_tokens metrics are queryable."""
|
||||
start_time = int((datetime.now(UTC) - timedelta(minutes=10)).timestamp())
|
||||
|
||||
response = client_with_models.telemetry.query_metrics(
|
||||
metric_name="total_tokens",
|
||||
start_time=start_time,
|
||||
)
|
||||
|
||||
assert isinstance(response, list)
|
||||
|
||||
assert isinstance(response[0].values, list), "Should return a list of metric series"
|
||||
|
||||
assert response[0].metric == "total_tokens"
|
||||
|
||||
# Use the actual values from setup instead of hardcoded values
|
||||
expected_values = setup_telemetry_metrics_data["total_tokens"]
|
||||
assert response[0].values[-1].value in expected_values, (
|
||||
f"Expected one of {expected_values}, got {response[0].values[-1].value}"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Skipping this test until client is regenerated")
|
||||
def test_query_metrics_with_time_range(llama_stack_client, text_model_id):
|
||||
"""Test that metrics are queryable with time range."""
|
||||
end_time = int(datetime.now(UTC).timestamp())
|
||||
start_time = end_time - 600 # 10 minutes ago
|
||||
|
||||
response = llama_stack_client.telemetry.query_metrics(
|
||||
metric_name="prompt_tokens",
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
)
|
||||
|
||||
assert isinstance(response, list)
|
||||
|
||||
assert isinstance(response[0].values, list), "Should return a list of metric series"
|
||||
|
||||
assert response[0].metric == "prompt_tokens"
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Skipping this test until client is regenerated")
|
||||
def test_query_metrics_with_label_matchers(llama_stack_client, text_model_id):
|
||||
"""Test that metrics are queryable with label matchers."""
|
||||
start_time = int((datetime.now(UTC) - timedelta(minutes=10)).timestamp())
|
||||
|
||||
response = llama_stack_client.telemetry.query_metrics(
|
||||
metric_name="prompt_tokens",
|
||||
start_time=start_time,
|
||||
label_matchers=[{"name": "model_id", "value": text_model_id, "operator": "="}],
|
||||
)
|
||||
|
||||
assert isinstance(response[0].values, list), "Should return a list of metric series"
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Skipping this test until client is regenerated")
|
||||
def test_query_metrics_nonexistent_metric(llama_stack_client):
|
||||
"""Test that querying a nonexistent metric returns empty data."""
|
||||
start_time = int((datetime.now(UTC) - timedelta(minutes=10)).timestamp())
|
||||
|
||||
response = llama_stack_client.telemetry.query_metrics(
|
||||
metric_name="nonexistent_metric",
|
||||
start_time=start_time,
|
||||
)
|
||||
|
||||
assert isinstance(response, list), "Should return an empty list for nonexistent metric"
|
||||
assert len(response) == 0
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Skipping this test until client is regenerated")
|
||||
def test_query_metrics_with_granularity(llama_stack_client, text_model_id):
|
||||
"""Test that metrics are queryable with different granularity levels."""
|
||||
start_time = int((datetime.now(UTC) - timedelta(minutes=10)).timestamp())
|
||||
|
||||
# Test hourly granularity
|
||||
hourly_response = llama_stack_client.telemetry.query_metrics(
|
||||
metric_name="total_tokens",
|
||||
start_time=start_time,
|
||||
granularity="1h",
|
||||
)
|
||||
|
||||
# Test daily granularity
|
||||
daily_response = llama_stack_client.telemetry.query_metrics(
|
||||
metric_name="total_tokens",
|
||||
start_time=start_time,
|
||||
granularity="1d",
|
||||
)
|
||||
|
||||
# Test no granularity (raw data points)
|
||||
raw_response = llama_stack_client.telemetry.query_metrics(
|
||||
metric_name="total_tokens",
|
||||
start_time=start_time,
|
||||
granularity=None,
|
||||
)
|
||||
|
||||
# All should return valid data
|
||||
assert isinstance(hourly_response[0].values, list), "Hourly granularity should return data"
|
||||
assert isinstance(daily_response[0].values, list), "Daily granularity should return data"
|
||||
assert isinstance(raw_response[0].values, list), "No granularity should return data"
|
||||
|
||||
# Verify that different granularities produce different aggregation levels
|
||||
# (The exact number depends on data distribution, but they should be queryable)
|
||||
assert len(hourly_response[0].values) >= 0, "Hourly granularity should be queryable"
|
||||
assert len(daily_response[0].values) >= 0, "Daily granularity should be queryable"
|
||||
assert len(raw_response[0].values) >= 0, "No granularity should be queryable"
|
||||
Loading…
Add table
Add a link
Reference in a new issue