mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
add model type to APIs (#588)
# What does this PR do? This PR adds a new model type field to support embedding models to be registered. Summary of changes: 1) Each registered model by default is an llm model. 2) User can specify an embedding model type, while registering.If specified, the model bypass the llama model checks since embedding models can by of any type and based on llama. 3) User needs to include the required embedding dimension in metadata. This will be used by embedding generation to generate the requried size of embeddings. ## Test Plan This PR will go together will need to be merged with two follow up PRs that will include test plans.
This commit is contained in:
parent
7e1d628864
commit
8e33db6015
6 changed files with 77 additions and 13 deletions
|
@ -209,6 +209,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
provider_model_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
model_type: Optional[ModelType] = None,
|
||||
) -> Model:
|
||||
if provider_model_id is None:
|
||||
provider_model_id = model_id
|
||||
|
@ -222,11 +223,21 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
)
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
if model_type is None:
|
||||
model_type = ModelType.llm
|
||||
if (
|
||||
"embedding_dimension" not in metadata
|
||||
and model_type == ModelType.embedding_model
|
||||
):
|
||||
raise ValueError(
|
||||
"Embedding model must have an embedding dimension in its metadata"
|
||||
)
|
||||
model = Model(
|
||||
identifier=model_id,
|
||||
provider_resource_id=provider_model_id,
|
||||
provider_id=provider_id,
|
||||
metadata=metadata,
|
||||
model_type=model_type,
|
||||
)
|
||||
registered_model = await self.register_object(model)
|
||||
return registered_model
|
||||
|
@ -298,16 +309,29 @@ class MemoryBanksRoutingTable(CommonRoutingTableImpl, MemoryBanks):
|
|||
raise ValueError(
|
||||
"No provider specified and multiple providers available. Please specify a provider_id."
|
||||
)
|
||||
memory_bank = parse_obj_as(
|
||||
MemoryBank,
|
||||
{
|
||||
"identifier": memory_bank_id,
|
||||
"type": ResourceType.memory_bank.value,
|
||||
"provider_id": provider_id,
|
||||
"provider_resource_id": provider_memory_bank_id,
|
||||
**params.model_dump(),
|
||||
},
|
||||
)
|
||||
model = await self.get_object_by_identifier("model", params.embedding_model)
|
||||
if model is None:
|
||||
raise ValueError(f"Model {params.embedding_model} not found")
|
||||
if model.model_type != ModelType.embedding_model:
|
||||
raise ValueError(
|
||||
f"Model {params.embedding_model} is not an embedding model"
|
||||
)
|
||||
if "embedding_dimension" not in model.metadata:
|
||||
raise ValueError(
|
||||
f"Model {params.embedding_model} does not have an embedding dimension"
|
||||
)
|
||||
memory_bank_data = {
|
||||
"identifier": memory_bank_id,
|
||||
"type": ResourceType.memory_bank.value,
|
||||
"provider_id": provider_id,
|
||||
"provider_resource_id": provider_memory_bank_id,
|
||||
**params.model_dump(),
|
||||
}
|
||||
if params.memory_bank_type == MemoryBankType.vector.value:
|
||||
memory_bank_data["embedding_dimension"] = model.metadata[
|
||||
"embedding_dimension"
|
||||
]
|
||||
memory_bank = parse_obj_as(MemoryBank, memory_bank_data)
|
||||
await self.register_object(memory_bank)
|
||||
return memory_bank
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue