mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-10 13:28:40 +00:00
improve agent metrics integration test and cleanup fixtures
- simplified test to use telemetry.query_metrics for verification - test now validates actual queryable metrics data - verified by query metrics functionality added in #3074
This commit is contained in:
parent
69b692af91
commit
8f0413e743
5 changed files with 406 additions and 208 deletions
170
tests/integration/agents/conftest.py
Normal file
170
tests/integration/agents/conftest.py
Normal file
|
@ -0,0 +1,170 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, Callable
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.inference import ToolDefinition
|
||||
from llama_stack.apis.tools import ToolInvocationResult
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.config import (
|
||||
TelemetryConfig,
|
||||
TelemetrySink,
|
||||
)
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import (
|
||||
TelemetryAdapter,
|
||||
)
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
from llama_stack.providers.utils.kvstore.sqlite.sqlite import SqliteKVStoreImpl
|
||||
from llama_stack.providers.utils.telemetry import tracing as telemetry_tracing
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_agent_fixture():
|
||||
def _make(telemetry, kvstore) -> ChatAgent:
|
||||
agent = ChatAgent(
|
||||
agent_id="test-agent",
|
||||
agent_config=Mock(),
|
||||
inference_api=Mock(),
|
||||
safety_api=Mock(),
|
||||
tool_runtime_api=Mock(),
|
||||
tool_groups_api=Mock(),
|
||||
vector_io_api=Mock(),
|
||||
telemetry_api=telemetry,
|
||||
persistence_store=kvstore,
|
||||
created_at="2025-01-01T00:00:00Z",
|
||||
policy=[],
|
||||
)
|
||||
agent.agent_config.client_tools = []
|
||||
agent.agent_config.max_infer_iters = 5
|
||||
agent.input_shields = []
|
||||
agent.output_shields = []
|
||||
agent.tool_defs = [
|
||||
ToolDefinition(tool_name="web_search", description="", parameters={}),
|
||||
ToolDefinition(tool_name="knowledge_search", description="", parameters={}),
|
||||
]
|
||||
agent.tool_name_to_args = {}
|
||||
|
||||
# Stub tool runtime invoke_tool
|
||||
async def _mock_invoke_tool(
|
||||
*args: Any,
|
||||
tool_name: str | None = None,
|
||||
kwargs: dict | None = None,
|
||||
**extra: Any,
|
||||
):
|
||||
return ToolInvocationResult(content="Tool execution result")
|
||||
|
||||
agent.tool_runtime_api.invoke_tool = _mock_invoke_tool
|
||||
return agent
|
||||
|
||||
return _make
|
||||
|
||||
|
||||
def _chat_stream(tool_name: str | None, content: str = ""):
|
||||
from llama_stack.apis.common.content_types import (
|
||||
TextDelta,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
StopReason,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import ToolCall
|
||||
|
||||
async def gen():
|
||||
# Start
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta=TextDelta(text=""),
|
||||
)
|
||||
)
|
||||
|
||||
# Content
|
||||
if content:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=TextDelta(text=content),
|
||||
)
|
||||
)
|
||||
|
||||
# Tool call if specified
|
||||
if tool_name:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
tool_call=ToolCall(call_id="call_0", tool_name=tool_name, arguments={}),
|
||||
parse_status=ToolCallParseStatus.succeeded,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Complete
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta=TextDelta(text=""),
|
||||
stop_reason=StopReason.end_of_turn,
|
||||
)
|
||||
)
|
||||
|
||||
return gen()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def telemetry(tmp_path: Path) -> AsyncGenerator[TelemetryAdapter, None]:
|
||||
db_path = tmp_path / "trace_store.db"
|
||||
cfg = TelemetryConfig(
|
||||
sinks=[TelemetrySink.CONSOLE, TelemetrySink.SQLITE],
|
||||
sqlite_db_path=str(db_path),
|
||||
)
|
||||
telemetry = TelemetryAdapter(cfg, deps={})
|
||||
telemetry_tracing.setup_logger(telemetry)
|
||||
try:
|
||||
yield telemetry
|
||||
finally:
|
||||
await telemetry.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def kvstore(tmp_path: Path) -> SqliteKVStoreImpl:
|
||||
kv_path = tmp_path / "agent_kvstore.db"
|
||||
kv = SqliteKVStoreImpl(SqliteKVStoreConfig(db_path=str(kv_path)))
|
||||
await kv.initialize()
|
||||
return kv
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def span_patch():
|
||||
with (
|
||||
patch("llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span") as mock_span,
|
||||
patch(
|
||||
"llama_stack.providers.utils.telemetry.tracing.generate_span_id",
|
||||
return_value="0000000000000abc",
|
||||
),
|
||||
):
|
||||
mock_span.return_value = Mock(get_span_context=Mock(return_value=Mock(trace_id=0x123, span_id=0xABC)))
|
||||
yield
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_completion_fn() -> Callable[[str | None, str], Callable]:
|
||||
def _factory(tool_name: str | None = None, content: str = "") -> Callable:
|
||||
async def chat_completion(*args: Any, **kwargs: Any):
|
||||
return _chat_stream(tool_name, content)
|
||||
|
||||
return chat_completion
|
||||
|
||||
return _factory
|
|
@ -5,55 +5,79 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
from unittest.mock import AsyncMock, Mock, patch
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
|
||||
from llama_stack.providers.utils.telemetry import tracing as telemetry_tracing
|
||||
|
||||
|
||||
class TestAgentMetricsIntegration:
|
||||
"""Smoke test for agent metrics integration"""
|
||||
|
||||
async def test_agent_metrics_methods_exist_and_work(self):
|
||||
"""Test that metrics methods exist and can be called without errors"""
|
||||
# Create a minimal agent instance with mocked dependencies
|
||||
telemetry_api = AsyncMock()
|
||||
telemetry_api.logged_events = []
|
||||
|
||||
async def mock_log_event(event):
|
||||
telemetry_api.logged_events.append(event)
|
||||
|
||||
telemetry_api.log_event = mock_log_event
|
||||
|
||||
agent = ChatAgent(
|
||||
agent_id="test-agent",
|
||||
agent_config=Mock(),
|
||||
inference_api=Mock(),
|
||||
safety_api=Mock(),
|
||||
tool_runtime_api=Mock(),
|
||||
tool_groups_api=Mock(),
|
||||
vector_io_api=Mock(),
|
||||
telemetry_api=telemetry_api,
|
||||
persistence_store=Mock(),
|
||||
created_at="2025-01-01T00:00:00Z",
|
||||
policy=[],
|
||||
async def test_agent_metrics_end_to_end(
|
||||
self: Any,
|
||||
telemetry: Any,
|
||||
kvstore: Any,
|
||||
make_agent_fixture: Any,
|
||||
span_patch: Any,
|
||||
make_completion_fn: Any,
|
||||
) -> None:
|
||||
from llama_stack.apis.inference import (
|
||||
SamplingParams,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
with patch("llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span") as mock_span:
|
||||
mock_span.return_value = Mock(get_span_context=Mock(return_value=Mock(trace_id=123, span_id=456)))
|
||||
agent: Any = make_agent_fixture(telemetry, kvstore)
|
||||
|
||||
# Test all metrics methods work
|
||||
agent._track_step()
|
||||
agent._track_workflow("completed", 2.5)
|
||||
agent._track_tool("web_search")
|
||||
session_id = await agent.create_session("s")
|
||||
sampling_params = SamplingParams(max_tokens=64)
|
||||
|
||||
# Wait for async operations
|
||||
await asyncio.sleep(0.01)
|
||||
# single trace: plain, knowledge_search, web_search
|
||||
await telemetry_tracing.start_trace("agent_metrics")
|
||||
agent.inference_api.chat_completion = make_completion_fn(None, "Hello! I can help you with that.")
|
||||
async for _ in agent.run(
|
||||
session_id,
|
||||
"t1",
|
||||
[UserMessage(content="Hello")],
|
||||
sampling_params,
|
||||
stream=True,
|
||||
):
|
||||
pass
|
||||
agent.inference_api.chat_completion = make_completion_fn("knowledge_search", "")
|
||||
async for _ in agent.run(
|
||||
session_id,
|
||||
"t2",
|
||||
[UserMessage(content="Please search knowledge")],
|
||||
sampling_params,
|
||||
stream=True,
|
||||
):
|
||||
pass
|
||||
agent.inference_api.chat_completion = make_completion_fn("web_search", "")
|
||||
async for _ in agent.run(
|
||||
session_id,
|
||||
"t3",
|
||||
[UserMessage(content="Please search web")],
|
||||
sampling_params,
|
||||
stream=True,
|
||||
):
|
||||
pass
|
||||
await telemetry_tracing.end_trace()
|
||||
|
||||
# Basic verification that telemetry was called
|
||||
assert len(telemetry_api.logged_events) >= 3
|
||||
# Poll briefly to avoid flake with async persistence
|
||||
tool_labels: set[str] = set()
|
||||
for _ in range(10):
|
||||
resp = await telemetry.query_metrics("llama_stack_agent_tool_calls_total", start_time=0, end_time=None)
|
||||
tool_labels.clear()
|
||||
for series in getattr(resp, "data", []) or []:
|
||||
for lbl in getattr(series, "labels", []) or []:
|
||||
name = getattr(lbl, "name", None) or getattr(lbl, "key", None)
|
||||
value = getattr(lbl, "value", None)
|
||||
if name == "tool" and value:
|
||||
tool_labels.add(value)
|
||||
|
||||
# Verify we can call the methods without exceptions
|
||||
agent._track_tool("knowledge_search") # Test tool mapping
|
||||
await asyncio.sleep(0.01)
|
||||
# Look for both web_search AND some form of knowledge search
|
||||
if ("web_search" in tool_labels) and ("rag" in tool_labels or "knowledge_search" in tool_labels):
|
||||
break
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
assert len(telemetry_api.logged_events) >= 4
|
||||
# More descriptive assertion
|
||||
assert bool(tool_labels & {"web_search", "rag", "knowledge_search"}), (
|
||||
f"Expected tool calls not found. Got: {tool_labels}"
|
||||
)
|
||||
|
|
|
@ -14,70 +14,56 @@ from llama_stack.providers.inline.telemetry.meta_reference.telemetry import Tele
|
|||
|
||||
|
||||
class TestAgentMetricsHistogram:
|
||||
"""Unit tests for histogram support in telemetry adapter for agent metrics"""
|
||||
"""Tests for agent histogram metrics"""
|
||||
|
||||
@pytest.fixture
|
||||
def telemetry_config(self):
|
||||
"""Basic telemetry config for testing"""
|
||||
return TelemetryConfig(
|
||||
service_name="test-service",
|
||||
sinks=[],
|
||||
)
|
||||
def config(self):
|
||||
return TelemetryConfig(service_name="test-service", sinks=[])
|
||||
|
||||
@pytest.fixture
|
||||
def telemetry_adapter(self, telemetry_config):
|
||||
"""TelemetryAdapter with mocked meter"""
|
||||
adapter = TelemetryAdapter(telemetry_config, {})
|
||||
# Mock the meter to avoid OpenTelemetry setup
|
||||
adapter.meter = Mock()
|
||||
def adapter(self, config):
|
||||
adapter = TelemetryAdapter(config, {})
|
||||
adapter.meter = Mock() # skip otel setup
|
||||
return adapter
|
||||
|
||||
def test_get_or_create_histogram_new(self, telemetry_adapter):
|
||||
"""Test creating a new histogram"""
|
||||
mock_histogram = Mock()
|
||||
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
|
||||
def test_histogram_creation(self, adapter):
|
||||
mock_hist = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
|
||||
# Clear global storage to ensure clean state
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
result = telemetry_adapter._get_or_create_histogram("test_histogram", "s", [0.1, 0.5, 1.0, 5.0, 10.0])
|
||||
result = adapter._get_or_create_histogram("test_histogram", "s")
|
||||
|
||||
assert result == mock_histogram
|
||||
telemetry_adapter.meter.create_histogram.assert_called_once_with(
|
||||
assert result == mock_hist
|
||||
adapter.meter.create_histogram.assert_called_once_with(
|
||||
name="test_histogram",
|
||||
unit="s",
|
||||
description="Histogram for test_histogram",
|
||||
description="test histogram",
|
||||
)
|
||||
assert _GLOBAL_STORAGE["histograms"]["test_histogram"] == mock_histogram
|
||||
assert _GLOBAL_STORAGE["histograms"]["test_histogram"] == mock_hist
|
||||
|
||||
def test_get_or_create_histogram_existing(self, telemetry_adapter):
|
||||
"""Test retrieving an existing histogram"""
|
||||
mock_histogram = Mock()
|
||||
|
||||
# Pre-populate global storage
|
||||
def test_histogram_reuse(self, adapter):
|
||||
mock_hist = Mock()
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {"existing_histogram": mock_histogram}
|
||||
_GLOBAL_STORAGE["histograms"] = {"existing_histogram": mock_hist}
|
||||
|
||||
result = telemetry_adapter._get_or_create_histogram("existing_histogram", "ms")
|
||||
result = adapter._get_or_create_histogram("existing_histogram", "ms")
|
||||
|
||||
assert result == mock_histogram
|
||||
# Should not create a new histogram
|
||||
telemetry_adapter.meter.create_histogram.assert_not_called()
|
||||
assert result == mock_hist
|
||||
adapter.meter.create_histogram.assert_not_called()
|
||||
|
||||
def test_log_metric_duration_histogram(self, telemetry_adapter):
|
||||
"""Test logging duration metrics creates histogram"""
|
||||
mock_histogram = Mock()
|
||||
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
|
||||
def test_workflow_duration_histogram(self, adapter):
|
||||
mock_hist = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
|
||||
# Clear global storage
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
metric_event = MetricEvent(
|
||||
event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="llama_stack_agent_workflow_duration_seconds",
|
||||
|
@ -88,27 +74,24 @@ class TestAgentMetricsHistogram:
|
|||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
|
||||
telemetry_adapter._log_metric(metric_event)
|
||||
adapter._log_metric(event)
|
||||
|
||||
# Verify histogram was created and recorded
|
||||
telemetry_adapter.meter.create_histogram.assert_called_once_with(
|
||||
adapter.meter.create_histogram.assert_called_once_with(
|
||||
name="llama_stack_agent_workflow_duration_seconds",
|
||||
unit="s",
|
||||
description="Histogram for llama_stack_agent_workflow_duration_seconds",
|
||||
description="llama stack agent workflow duration seconds",
|
||||
)
|
||||
mock_histogram.record.assert_called_once_with(15.7, attributes={"agent_id": "test-agent"})
|
||||
mock_hist.record.assert_called_once_with(15.7, attributes={"agent_id": "test-agent"})
|
||||
|
||||
def test_log_metric_duration_histogram_default_buckets(self, telemetry_adapter):
|
||||
"""Test that duration metrics use default buckets"""
|
||||
mock_histogram = Mock()
|
||||
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
|
||||
def test_duration_buckets_configured_via_views(self, adapter):
|
||||
mock_hist = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
|
||||
# Clear global storage
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
metric_event = MetricEvent(
|
||||
event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="custom_duration_seconds",
|
||||
|
@ -119,22 +102,20 @@ class TestAgentMetricsHistogram:
|
|||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
|
||||
telemetry_adapter._log_metric(metric_event)
|
||||
adapter._log_metric(event)
|
||||
|
||||
# Verify histogram was created (buckets are not passed to create_histogram in OpenTelemetry)
|
||||
mock_histogram.record.assert_called_once_with(5.2, attributes={})
|
||||
# buckets configured via otel views, not passed to create_histogram
|
||||
mock_hist.record.assert_called_once_with(5.2, attributes={})
|
||||
|
||||
def test_log_metric_non_duration_counter(self, telemetry_adapter):
|
||||
"""Test that non-duration metrics still use counters"""
|
||||
def test_non_duration_uses_counter(self, adapter):
|
||||
mock_counter = Mock()
|
||||
telemetry_adapter.meter.create_counter.return_value = mock_counter
|
||||
adapter.meter.create_counter.return_value = mock_counter
|
||||
|
||||
# Clear global storage
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["counters"] = {}
|
||||
|
||||
metric_event = MetricEvent(
|
||||
event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="llama_stack_agent_workflows_total",
|
||||
|
@ -144,18 +125,16 @@ class TestAgentMetricsHistogram:
|
|||
attributes={"agent_id": "test-agent", "status": "completed"},
|
||||
)
|
||||
|
||||
telemetry_adapter._log_metric(metric_event)
|
||||
adapter._log_metric(event)
|
||||
|
||||
# Verify counter was used, not histogram
|
||||
telemetry_adapter.meter.create_counter.assert_called_once()
|
||||
telemetry_adapter.meter.create_histogram.assert_not_called()
|
||||
adapter.meter.create_counter.assert_called_once()
|
||||
adapter.meter.create_histogram.assert_not_called()
|
||||
mock_counter.add.assert_called_once_with(1, attributes={"agent_id": "test-agent", "status": "completed"})
|
||||
|
||||
def test_log_metric_no_meter(self, telemetry_adapter):
|
||||
"""Test metric logging when meter is None"""
|
||||
telemetry_adapter.meter = None
|
||||
def test_no_meter_doesnt_crash(self, adapter):
|
||||
adapter.meter = None
|
||||
|
||||
metric_event = MetricEvent(
|
||||
event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="test_duration_seconds",
|
||||
|
@ -165,80 +144,59 @@ class TestAgentMetricsHistogram:
|
|||
attributes={},
|
||||
)
|
||||
|
||||
# Should not raise exception
|
||||
telemetry_adapter._log_metric(metric_event)
|
||||
adapter._log_metric(event) # shouldn't crash
|
||||
|
||||
def test_histogram_name_detection_patterns(self, telemetry_adapter):
|
||||
"""Test various duration metric name patterns"""
|
||||
mock_histogram = Mock()
|
||||
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
|
||||
|
||||
# Clear global storage
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
duration_metrics = [
|
||||
"workflow_duration_seconds",
|
||||
"request_duration_seconds",
|
||||
"processing_duration_seconds",
|
||||
"llama_stack_agent_workflow_duration_seconds",
|
||||
]
|
||||
|
||||
for metric_name in duration_metrics:
|
||||
_GLOBAL_STORAGE["histograms"] = {} # Reset for each test
|
||||
|
||||
metric_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric=metric_name,
|
||||
value=1.0,
|
||||
timestamp=1234567890.0,
|
||||
unit="s",
|
||||
attributes={},
|
||||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
|
||||
telemetry_adapter._log_metric(metric_event)
|
||||
mock_histogram.record.assert_called()
|
||||
|
||||
# Reset call count for negative test
|
||||
mock_histogram.record.reset_mock()
|
||||
telemetry_adapter.meter.create_histogram.reset_mock()
|
||||
|
||||
# Test non-duration metric
|
||||
non_duration_metric = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="workflow_total", # No "_duration_seconds" suffix
|
||||
value=1,
|
||||
timestamp=1234567890.0,
|
||||
unit="1",
|
||||
attributes={},
|
||||
)
|
||||
|
||||
telemetry_adapter._log_metric(non_duration_metric)
|
||||
|
||||
# Should not create histogram for non-duration metric
|
||||
telemetry_adapter.meter.create_histogram.assert_not_called()
|
||||
mock_histogram.record.assert_not_called()
|
||||
|
||||
def test_histogram_global_storage_isolation(self, telemetry_adapter):
|
||||
"""Test that histogram storage doesn't interfere with counters"""
|
||||
mock_histogram = Mock()
|
||||
def test_histogram_vs_counter_by_type(self, adapter):
|
||||
mock_hist = Mock()
|
||||
mock_counter = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
adapter.meter.create_counter.return_value = mock_counter
|
||||
|
||||
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
|
||||
telemetry_adapter.meter.create_counter.return_value = mock_counter
|
||||
|
||||
# Clear global storage
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
_GLOBAL_STORAGE["counters"] = {}
|
||||
|
||||
# Create histogram
|
||||
duration_metric = MetricEvent(
|
||||
# histogram metric
|
||||
hist_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="workflow_duration_seconds",
|
||||
value=1.0,
|
||||
timestamp=1234567890.0,
|
||||
unit="s",
|
||||
attributes={},
|
||||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
adapter._log_metric(hist_event)
|
||||
mock_hist.record.assert_called()
|
||||
|
||||
# counter metric (default type)
|
||||
counter_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="workflow_total",
|
||||
value=1,
|
||||
timestamp=1234567890.0,
|
||||
unit="1",
|
||||
attributes={},
|
||||
)
|
||||
adapter._log_metric(counter_event)
|
||||
mock_counter.add.assert_called()
|
||||
|
||||
def test_storage_separation(self, adapter):
|
||||
mock_hist = Mock()
|
||||
mock_counter = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
adapter.meter.create_counter.return_value = mock_counter
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
_GLOBAL_STORAGE["counters"] = {}
|
||||
|
||||
# create both types
|
||||
hist_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="test_duration_seconds",
|
||||
|
@ -248,10 +206,7 @@ class TestAgentMetricsHistogram:
|
|||
attributes={},
|
||||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
telemetry_adapter._log_metric(duration_metric)
|
||||
|
||||
# Create counter
|
||||
counter_metric = MetricEvent(
|
||||
counter_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="test_counter",
|
||||
|
@ -260,33 +215,30 @@ class TestAgentMetricsHistogram:
|
|||
unit="1",
|
||||
attributes={},
|
||||
)
|
||||
telemetry_adapter._log_metric(counter_metric)
|
||||
|
||||
# Verify both were created and stored separately
|
||||
adapter._log_metric(hist_event)
|
||||
adapter._log_metric(counter_event)
|
||||
|
||||
# check they're stored separately
|
||||
assert "test_duration_seconds" in _GLOBAL_STORAGE["histograms"]
|
||||
assert "test_counter" in _GLOBAL_STORAGE["counters"]
|
||||
assert "test_duration_seconds" not in _GLOBAL_STORAGE["counters"]
|
||||
assert "test_counter" not in _GLOBAL_STORAGE["histograms"]
|
||||
|
||||
def test_histogram_buckets_parameter_ignored(self, telemetry_adapter):
|
||||
"""Test that buckets parameter doesn't affect histogram creation (OpenTelemetry handles buckets internally)"""
|
||||
mock_histogram = Mock()
|
||||
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
|
||||
def test_histogram_uses_views_for_buckets(self, adapter):
|
||||
mock_hist = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
|
||||
# Clear global storage
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
# Call with buckets parameter
|
||||
result = telemetry_adapter._get_or_create_histogram(
|
||||
"test_histogram", "s", buckets=[0.1, 0.5, 1.0, 5.0, 10.0, 25.0, 50.0, 100.0]
|
||||
)
|
||||
result = adapter._get_or_create_histogram("test_histogram", "s")
|
||||
|
||||
# Buckets are not passed to OpenTelemetry create_histogram
|
||||
telemetry_adapter.meter.create_histogram.assert_called_once_with(
|
||||
# buckets come from otel views, not create_histogram params
|
||||
adapter.meter.create_histogram.assert_called_once_with(
|
||||
name="test_histogram",
|
||||
unit="s",
|
||||
description="Histogram for test_histogram",
|
||||
description="test histogram",
|
||||
)
|
||||
assert result == mock_histogram
|
||||
assert result == mock_hist
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue