improve agent metrics integration test and cleanup fixtures

- simplified test to use telemetry.query_metrics for verification
- test now validates actual queryable metrics data
- verified by query metrics functionality added in #3074
This commit is contained in:
skamenan7 2025-09-19 10:47:16 -04:00
parent 69b692af91
commit 8f0413e743
5 changed files with 406 additions and 208 deletions

View file

@ -5,55 +5,79 @@
# the root directory of this source tree.
import asyncio
from unittest.mock import AsyncMock, Mock, patch
from typing import Any
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
from llama_stack.providers.utils.telemetry import tracing as telemetry_tracing
class TestAgentMetricsIntegration:
"""Smoke test for agent metrics integration"""
async def test_agent_metrics_methods_exist_and_work(self):
"""Test that metrics methods exist and can be called without errors"""
# Create a minimal agent instance with mocked dependencies
telemetry_api = AsyncMock()
telemetry_api.logged_events = []
async def mock_log_event(event):
telemetry_api.logged_events.append(event)
telemetry_api.log_event = mock_log_event
agent = ChatAgent(
agent_id="test-agent",
agent_config=Mock(),
inference_api=Mock(),
safety_api=Mock(),
tool_runtime_api=Mock(),
tool_groups_api=Mock(),
vector_io_api=Mock(),
telemetry_api=telemetry_api,
persistence_store=Mock(),
created_at="2025-01-01T00:00:00Z",
policy=[],
async def test_agent_metrics_end_to_end(
self: Any,
telemetry: Any,
kvstore: Any,
make_agent_fixture: Any,
span_patch: Any,
make_completion_fn: Any,
) -> None:
from llama_stack.apis.inference import (
SamplingParams,
UserMessage,
)
with patch("llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span") as mock_span:
mock_span.return_value = Mock(get_span_context=Mock(return_value=Mock(trace_id=123, span_id=456)))
agent: Any = make_agent_fixture(telemetry, kvstore)
# Test all metrics methods work
agent._track_step()
agent._track_workflow("completed", 2.5)
agent._track_tool("web_search")
session_id = await agent.create_session("s")
sampling_params = SamplingParams(max_tokens=64)
# Wait for async operations
await asyncio.sleep(0.01)
# single trace: plain, knowledge_search, web_search
await telemetry_tracing.start_trace("agent_metrics")
agent.inference_api.chat_completion = make_completion_fn(None, "Hello! I can help you with that.")
async for _ in agent.run(
session_id,
"t1",
[UserMessage(content="Hello")],
sampling_params,
stream=True,
):
pass
agent.inference_api.chat_completion = make_completion_fn("knowledge_search", "")
async for _ in agent.run(
session_id,
"t2",
[UserMessage(content="Please search knowledge")],
sampling_params,
stream=True,
):
pass
agent.inference_api.chat_completion = make_completion_fn("web_search", "")
async for _ in agent.run(
session_id,
"t3",
[UserMessage(content="Please search web")],
sampling_params,
stream=True,
):
pass
await telemetry_tracing.end_trace()
# Basic verification that telemetry was called
assert len(telemetry_api.logged_events) >= 3
# Poll briefly to avoid flake with async persistence
tool_labels: set[str] = set()
for _ in range(10):
resp = await telemetry.query_metrics("llama_stack_agent_tool_calls_total", start_time=0, end_time=None)
tool_labels.clear()
for series in getattr(resp, "data", []) or []:
for lbl in getattr(series, "labels", []) or []:
name = getattr(lbl, "name", None) or getattr(lbl, "key", None)
value = getattr(lbl, "value", None)
if name == "tool" and value:
tool_labels.add(value)
# Verify we can call the methods without exceptions
agent._track_tool("knowledge_search") # Test tool mapping
await asyncio.sleep(0.01)
# Look for both web_search AND some form of knowledge search
if ("web_search" in tool_labels) and ("rag" in tool_labels or "knowledge_search" in tool_labels):
break
await asyncio.sleep(0.1)
assert len(telemetry_api.logged_events) >= 4
# More descriptive assertion
assert bool(tool_labels & {"web_search", "rag", "knowledge_search"}), (
f"Expected tool calls not found. Got: {tool_labels}"
)