improve agent metrics integration test and cleanup fixtures

- simplified test to use telemetry.query_metrics for verification
- test now validates actual queryable metrics data
- verified by query metrics functionality added in #3074
This commit is contained in:
skamenan7 2025-09-19 10:47:16 -04:00
parent 69b692af91
commit 8f0413e743
5 changed files with 406 additions and 208 deletions

View file

@ -63,7 +63,7 @@ from llama_stack.apis.inference import (
UserMessage,
)
from llama_stack.apis.safety import Safety
from llama_stack.apis.telemetry import MetricEvent, Telemetry
from llama_stack.apis.telemetry import MetricEvent, MetricType, Telemetry
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.datatypes import AccessRule
@ -124,6 +124,9 @@ class ChatAgent(ShieldRunnerMixin):
output_shields=agent_config.output_shields,
)
# Initialize workflow start time to None
self._workflow_start_time: float | None = None
def turn_to_messages(self, turn: Turn) -> list[Message]:
messages = []
@ -174,14 +177,23 @@ class ChatAgent(ShieldRunnerMixin):
return await self.storage.create_session(name)
def _emit_metric(
self, metric_name: str, value: int | float, unit: str, attributes: dict[str, str] | None = None
self,
metric_name: str,
value: int | float,
unit: str,
attributes: dict[str, str] | None = None,
metric_type: MetricType | None = None,
) -> None:
"""Emit a single metric event"""
logger.info(f"_emit_metric called: {metric_name} = {value} {unit}")
if not self.telemetry_api:
logger.warning(f"No telemetry_api available for metric {metric_name}")
return
span = get_current_span()
if not span:
logger.warning(f"No current span available for metric {metric_name}")
return
context = span.get_span_context()
@ -193,22 +205,42 @@ class ChatAgent(ShieldRunnerMixin):
timestamp=time.time(),
unit=unit,
attributes={"agent_id": self.agent_id, **(attributes or {})},
metric_type=metric_type,
)
# Create task with name for better debugging and potential cleanup
# Create task with name for better debugging and capture any async errors
task_name = f"metric-{metric_name}-{self.agent_id}"
asyncio.create_task(self.telemetry_api.log_event(metric), name=task_name)
logger.info(f"Creating telemetry task: {task_name}")
task = asyncio.create_task(self.telemetry_api.log_event(metric), name=task_name)
def _on_metric_task_done(t: asyncio.Task) -> None:
try:
exc = t.exception()
except asyncio.CancelledError:
logger.debug("Metric task %s was cancelled", task_name)
return
if exc is not None:
logger.warning("Metric task %s failed: %s", task_name, exc)
# Only add callback if task creation succeeded (not None from mocking)
if task is not None:
task.add_done_callback(_on_metric_task_done)
def _track_step(self):
self._emit_metric("llama_stack_agent_steps_total", 1, "1")
logger.info("_track_step called")
self._emit_metric("llama_stack_agent_steps_total", 1, "1", metric_type=MetricType.COUNTER)
def _track_workflow(self, status: str, duration: float):
self._emit_metric("llama_stack_agent_workflows_total", 1, "1", {"status": status})
self._emit_metric("llama_stack_agent_workflow_duration_seconds", duration, "s")
logger.info(f"_track_workflow called: status={status}, duration={duration:.2f}s")
self._emit_metric("llama_stack_agent_workflows_total", 1, "1", {"status": status}, MetricType.COUNTER)
self._emit_metric(
"llama_stack_agent_workflow_duration_seconds", duration, "s", metric_type=MetricType.HISTOGRAM
)
def _track_tool(self, tool_name: str):
logger.info(f"_track_tool called: {tool_name}")
normalized_name = "rag" if tool_name == "knowledge_search" else tool_name
self._emit_metric("llama_stack_agent_tool_calls_total", 1, "1", {"tool": normalized_name})
self._emit_metric("llama_stack_agent_tool_calls_total", 1, "1", {"tool": normalized_name}, MetricType.COUNTER)
async def get_messages_from_turns(self, turns: list[Turn]) -> list[Message]:
messages = []
@ -244,6 +276,9 @@ class ChatAgent(ShieldRunnerMixin):
if self.agent_config.name:
span.set_attribute("agent_name", self.agent_config.name)
# Set workflow start time for resume operations
self._workflow_start_time = time.time()
await self._initialize_tools()
async for chunk in self._run_turn(request):
yield chunk
@ -255,6 +290,9 @@ class ChatAgent(ShieldRunnerMixin):
) -> AsyncGenerator:
assert request.stream is True, "Non-streaming not supported"
# Track workflow start time for metrics
self._workflow_start_time = time.time()
is_resume = isinstance(request, AgentTurnResumeRequest)
session_info = await self.storage.get_session_info(request.session_id)
if session_info is None:
@ -356,6 +394,10 @@ class ChatAgent(ShieldRunnerMixin):
)
)
else:
# Track workflow completion when turn is actually complete
workflow_duration = time.time() - (self._workflow_start_time or time.time())
self._track_workflow("completed", workflow_duration)
chunk = AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseTurnCompletePayload(
@ -771,6 +813,7 @@ class ChatAgent(ShieldRunnerMixin):
# Track step execution metric
self._track_step()
self._track_tool(tool_call.tool_name)
# Add the result message to input_messages for the next iteration
input_messages.append(result_message)

View file

@ -12,7 +12,9 @@ from opentelemetry import metrics, trace
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics._internal.aggregation import ExplicitBucketHistogramAggregation
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry.sdk.metrics.view import View
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
@ -110,7 +112,17 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
if TelemetrySink.OTEL_METRIC in self.config.sinks:
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
metric_provider = MeterProvider(resource=resource, metric_readers=[metric_reader])
# decent default buckets for agent workflow timings
hist_buckets = [0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 25.0, 50.0, 100.0]
views = [
View(
instrument_type=metrics.Histogram,
aggregation=ExplicitBucketHistogramAggregation(boundaries=hist_buckets),
)
]
metric_provider = MeterProvider(resource=resource, metric_readers=[metric_reader], views=views)
metrics.set_meter_provider(metric_provider)
if TelemetrySink.SQLITE in self.config.sinks:
@ -140,8 +152,6 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
self._log_metric(event)
elif isinstance(event, StructuredLogEvent):
self._log_structured(event, ttl_seconds)
else:
raise ValueError(f"Unknown event type: {event}")
async def query_metrics(
self,
@ -211,7 +221,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
_GLOBAL_STORAGE["counters"][name] = self.meter.create_counter(
name=name,
unit=unit,
description=f"Counter for {name}",
description=name.replace("_", " "),
)
return _GLOBAL_STORAGE["counters"][name]
@ -221,7 +231,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
_GLOBAL_STORAGE["gauges"][name] = self.meter.create_gauge(
name=name,
unit=unit,
description=f"Gauge for {name}",
description=name.replace("_", " "),
)
return _GLOBAL_STORAGE["gauges"][name]
@ -265,7 +275,6 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
histogram = self._get_or_create_histogram(
event.metric,
event.unit,
[0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 25.0, 50.0, 100.0],
)
histogram.record(event.value, attributes=event.attributes)
elif event.metric_type == MetricType.UP_DOWN_COUNTER:
@ -281,17 +290,17 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
_GLOBAL_STORAGE["up_down_counters"][name] = self.meter.create_up_down_counter(
name=name,
unit=unit,
description=f"UpDownCounter for {name}",
description=name.replace("_", " "),
)
return _GLOBAL_STORAGE["up_down_counters"][name]
def _get_or_create_histogram(self, name: str, unit: str, buckets: list[float] | None = None) -> metrics.Histogram:
def _get_or_create_histogram(self, name: str, unit: str) -> metrics.Histogram:
assert self.meter is not None
if name not in _GLOBAL_STORAGE["histograms"]:
_GLOBAL_STORAGE["histograms"][name] = self.meter.create_histogram(
name=name,
unit=unit,
description=f"Histogram for {name}",
description=name.replace("_", " "),
)
return _GLOBAL_STORAGE["histograms"][name]

View file

@ -0,0 +1,170 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator, Callable
from pathlib import Path
from typing import Any
from unittest.mock import Mock, patch
import pytest
from llama_stack.apis.inference import ToolDefinition
from llama_stack.apis.tools import ToolInvocationResult
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
from llama_stack.providers.inline.telemetry.meta_reference.config import (
TelemetryConfig,
TelemetrySink,
)
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import (
TelemetryAdapter,
)
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from llama_stack.providers.utils.kvstore.sqlite.sqlite import SqliteKVStoreImpl
from llama_stack.providers.utils.telemetry import tracing as telemetry_tracing
@pytest.fixture
def make_agent_fixture():
def _make(telemetry, kvstore) -> ChatAgent:
agent = ChatAgent(
agent_id="test-agent",
agent_config=Mock(),
inference_api=Mock(),
safety_api=Mock(),
tool_runtime_api=Mock(),
tool_groups_api=Mock(),
vector_io_api=Mock(),
telemetry_api=telemetry,
persistence_store=kvstore,
created_at="2025-01-01T00:00:00Z",
policy=[],
)
agent.agent_config.client_tools = []
agent.agent_config.max_infer_iters = 5
agent.input_shields = []
agent.output_shields = []
agent.tool_defs = [
ToolDefinition(tool_name="web_search", description="", parameters={}),
ToolDefinition(tool_name="knowledge_search", description="", parameters={}),
]
agent.tool_name_to_args = {}
# Stub tool runtime invoke_tool
async def _mock_invoke_tool(
*args: Any,
tool_name: str | None = None,
kwargs: dict | None = None,
**extra: Any,
):
return ToolInvocationResult(content="Tool execution result")
agent.tool_runtime_api.invoke_tool = _mock_invoke_tool
return agent
return _make
def _chat_stream(tool_name: str | None, content: str = ""):
from llama_stack.apis.common.content_types import (
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
StopReason,
)
from llama_stack.models.llama.datatypes import ToolCall
async def gen():
# Start
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta=TextDelta(text=""),
)
)
# Content
if content:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=TextDelta(text=content),
)
)
# Tool call if specified
if tool_name:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
tool_call=ToolCall(call_id="call_0", tool_name=tool_name, arguments={}),
parse_status=ToolCallParseStatus.succeeded,
),
)
)
# Complete
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta=TextDelta(text=""),
stop_reason=StopReason.end_of_turn,
)
)
return gen()
@pytest.fixture
async def telemetry(tmp_path: Path) -> AsyncGenerator[TelemetryAdapter, None]:
db_path = tmp_path / "trace_store.db"
cfg = TelemetryConfig(
sinks=[TelemetrySink.CONSOLE, TelemetrySink.SQLITE],
sqlite_db_path=str(db_path),
)
telemetry = TelemetryAdapter(cfg, deps={})
telemetry_tracing.setup_logger(telemetry)
try:
yield telemetry
finally:
await telemetry.shutdown()
@pytest.fixture
async def kvstore(tmp_path: Path) -> SqliteKVStoreImpl:
kv_path = tmp_path / "agent_kvstore.db"
kv = SqliteKVStoreImpl(SqliteKVStoreConfig(db_path=str(kv_path)))
await kv.initialize()
return kv
@pytest.fixture
def span_patch():
with (
patch("llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span") as mock_span,
patch(
"llama_stack.providers.utils.telemetry.tracing.generate_span_id",
return_value="0000000000000abc",
),
):
mock_span.return_value = Mock(get_span_context=Mock(return_value=Mock(trace_id=0x123, span_id=0xABC)))
yield
@pytest.fixture
def make_completion_fn() -> Callable[[str | None, str], Callable]:
def _factory(tool_name: str | None = None, content: str = "") -> Callable:
async def chat_completion(*args: Any, **kwargs: Any):
return _chat_stream(tool_name, content)
return chat_completion
return _factory

View file

@ -5,55 +5,79 @@
# the root directory of this source tree.
import asyncio
from unittest.mock import AsyncMock, Mock, patch
from typing import Any
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
from llama_stack.providers.utils.telemetry import tracing as telemetry_tracing
class TestAgentMetricsIntegration:
"""Smoke test for agent metrics integration"""
async def test_agent_metrics_methods_exist_and_work(self):
"""Test that metrics methods exist and can be called without errors"""
# Create a minimal agent instance with mocked dependencies
telemetry_api = AsyncMock()
telemetry_api.logged_events = []
async def mock_log_event(event):
telemetry_api.logged_events.append(event)
telemetry_api.log_event = mock_log_event
agent = ChatAgent(
agent_id="test-agent",
agent_config=Mock(),
inference_api=Mock(),
safety_api=Mock(),
tool_runtime_api=Mock(),
tool_groups_api=Mock(),
vector_io_api=Mock(),
telemetry_api=telemetry_api,
persistence_store=Mock(),
created_at="2025-01-01T00:00:00Z",
policy=[],
async def test_agent_metrics_end_to_end(
self: Any,
telemetry: Any,
kvstore: Any,
make_agent_fixture: Any,
span_patch: Any,
make_completion_fn: Any,
) -> None:
from llama_stack.apis.inference import (
SamplingParams,
UserMessage,
)
with patch("llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span") as mock_span:
mock_span.return_value = Mock(get_span_context=Mock(return_value=Mock(trace_id=123, span_id=456)))
agent: Any = make_agent_fixture(telemetry, kvstore)
# Test all metrics methods work
agent._track_step()
agent._track_workflow("completed", 2.5)
agent._track_tool("web_search")
session_id = await agent.create_session("s")
sampling_params = SamplingParams(max_tokens=64)
# Wait for async operations
await asyncio.sleep(0.01)
# single trace: plain, knowledge_search, web_search
await telemetry_tracing.start_trace("agent_metrics")
agent.inference_api.chat_completion = make_completion_fn(None, "Hello! I can help you with that.")
async for _ in agent.run(
session_id,
"t1",
[UserMessage(content="Hello")],
sampling_params,
stream=True,
):
pass
agent.inference_api.chat_completion = make_completion_fn("knowledge_search", "")
async for _ in agent.run(
session_id,
"t2",
[UserMessage(content="Please search knowledge")],
sampling_params,
stream=True,
):
pass
agent.inference_api.chat_completion = make_completion_fn("web_search", "")
async for _ in agent.run(
session_id,
"t3",
[UserMessage(content="Please search web")],
sampling_params,
stream=True,
):
pass
await telemetry_tracing.end_trace()
# Basic verification that telemetry was called
assert len(telemetry_api.logged_events) >= 3
# Poll briefly to avoid flake with async persistence
tool_labels: set[str] = set()
for _ in range(10):
resp = await telemetry.query_metrics("llama_stack_agent_tool_calls_total", start_time=0, end_time=None)
tool_labels.clear()
for series in getattr(resp, "data", []) or []:
for lbl in getattr(series, "labels", []) or []:
name = getattr(lbl, "name", None) or getattr(lbl, "key", None)
value = getattr(lbl, "value", None)
if name == "tool" and value:
tool_labels.add(value)
# Verify we can call the methods without exceptions
agent._track_tool("knowledge_search") # Test tool mapping
await asyncio.sleep(0.01)
# Look for both web_search AND some form of knowledge search
if ("web_search" in tool_labels) and ("rag" in tool_labels or "knowledge_search" in tool_labels):
break
await asyncio.sleep(0.1)
assert len(telemetry_api.logged_events) >= 4
# More descriptive assertion
assert bool(tool_labels & {"web_search", "rag", "knowledge_search"}), (
f"Expected tool calls not found. Got: {tool_labels}"
)

View file

@ -14,70 +14,56 @@ from llama_stack.providers.inline.telemetry.meta_reference.telemetry import Tele
class TestAgentMetricsHistogram:
"""Unit tests for histogram support in telemetry adapter for agent metrics"""
"""Tests for agent histogram metrics"""
@pytest.fixture
def telemetry_config(self):
"""Basic telemetry config for testing"""
return TelemetryConfig(
service_name="test-service",
sinks=[],
)
def config(self):
return TelemetryConfig(service_name="test-service", sinks=[])
@pytest.fixture
def telemetry_adapter(self, telemetry_config):
"""TelemetryAdapter with mocked meter"""
adapter = TelemetryAdapter(telemetry_config, {})
# Mock the meter to avoid OpenTelemetry setup
adapter.meter = Mock()
def adapter(self, config):
adapter = TelemetryAdapter(config, {})
adapter.meter = Mock() # skip otel setup
return adapter
def test_get_or_create_histogram_new(self, telemetry_adapter):
"""Test creating a new histogram"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
def test_histogram_creation(self, adapter):
mock_hist = Mock()
adapter.meter.create_histogram.return_value = mock_hist
# Clear global storage to ensure clean state
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
result = telemetry_adapter._get_or_create_histogram("test_histogram", "s", [0.1, 0.5, 1.0, 5.0, 10.0])
result = adapter._get_or_create_histogram("test_histogram", "s")
assert result == mock_histogram
telemetry_adapter.meter.create_histogram.assert_called_once_with(
assert result == mock_hist
adapter.meter.create_histogram.assert_called_once_with(
name="test_histogram",
unit="s",
description="Histogram for test_histogram",
description="test histogram",
)
assert _GLOBAL_STORAGE["histograms"]["test_histogram"] == mock_histogram
assert _GLOBAL_STORAGE["histograms"]["test_histogram"] == mock_hist
def test_get_or_create_histogram_existing(self, telemetry_adapter):
"""Test retrieving an existing histogram"""
mock_histogram = Mock()
# Pre-populate global storage
def test_histogram_reuse(self, adapter):
mock_hist = Mock()
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {"existing_histogram": mock_histogram}
_GLOBAL_STORAGE["histograms"] = {"existing_histogram": mock_hist}
result = telemetry_adapter._get_or_create_histogram("existing_histogram", "ms")
result = adapter._get_or_create_histogram("existing_histogram", "ms")
assert result == mock_histogram
# Should not create a new histogram
telemetry_adapter.meter.create_histogram.assert_not_called()
assert result == mock_hist
adapter.meter.create_histogram.assert_not_called()
def test_log_metric_duration_histogram(self, telemetry_adapter):
"""Test logging duration metrics creates histogram"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
def test_workflow_duration_histogram(self, adapter):
mock_hist = Mock()
adapter.meter.create_histogram.return_value = mock_hist
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
metric_event = MetricEvent(
event = MetricEvent(
trace_id="123",
span_id="456",
metric="llama_stack_agent_workflow_duration_seconds",
@ -88,27 +74,24 @@ class TestAgentMetricsHistogram:
metric_type=MetricType.HISTOGRAM,
)
telemetry_adapter._log_metric(metric_event)
adapter._log_metric(event)
# Verify histogram was created and recorded
telemetry_adapter.meter.create_histogram.assert_called_once_with(
adapter.meter.create_histogram.assert_called_once_with(
name="llama_stack_agent_workflow_duration_seconds",
unit="s",
description="Histogram for llama_stack_agent_workflow_duration_seconds",
description="llama stack agent workflow duration seconds",
)
mock_histogram.record.assert_called_once_with(15.7, attributes={"agent_id": "test-agent"})
mock_hist.record.assert_called_once_with(15.7, attributes={"agent_id": "test-agent"})
def test_log_metric_duration_histogram_default_buckets(self, telemetry_adapter):
"""Test that duration metrics use default buckets"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
def test_duration_buckets_configured_via_views(self, adapter):
mock_hist = Mock()
adapter.meter.create_histogram.return_value = mock_hist
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
metric_event = MetricEvent(
event = MetricEvent(
trace_id="123",
span_id="456",
metric="custom_duration_seconds",
@ -119,22 +102,20 @@ class TestAgentMetricsHistogram:
metric_type=MetricType.HISTOGRAM,
)
telemetry_adapter._log_metric(metric_event)
adapter._log_metric(event)
# Verify histogram was created (buckets are not passed to create_histogram in OpenTelemetry)
mock_histogram.record.assert_called_once_with(5.2, attributes={})
# buckets configured via otel views, not passed to create_histogram
mock_hist.record.assert_called_once_with(5.2, attributes={})
def test_log_metric_non_duration_counter(self, telemetry_adapter):
"""Test that non-duration metrics still use counters"""
def test_non_duration_uses_counter(self, adapter):
mock_counter = Mock()
telemetry_adapter.meter.create_counter.return_value = mock_counter
adapter.meter.create_counter.return_value = mock_counter
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["counters"] = {}
metric_event = MetricEvent(
event = MetricEvent(
trace_id="123",
span_id="456",
metric="llama_stack_agent_workflows_total",
@ -144,18 +125,16 @@ class TestAgentMetricsHistogram:
attributes={"agent_id": "test-agent", "status": "completed"},
)
telemetry_adapter._log_metric(metric_event)
adapter._log_metric(event)
# Verify counter was used, not histogram
telemetry_adapter.meter.create_counter.assert_called_once()
telemetry_adapter.meter.create_histogram.assert_not_called()
adapter.meter.create_counter.assert_called_once()
adapter.meter.create_histogram.assert_not_called()
mock_counter.add.assert_called_once_with(1, attributes={"agent_id": "test-agent", "status": "completed"})
def test_log_metric_no_meter(self, telemetry_adapter):
"""Test metric logging when meter is None"""
telemetry_adapter.meter = None
def test_no_meter_doesnt_crash(self, adapter):
adapter.meter = None
metric_event = MetricEvent(
event = MetricEvent(
trace_id="123",
span_id="456",
metric="test_duration_seconds",
@ -165,80 +144,59 @@ class TestAgentMetricsHistogram:
attributes={},
)
# Should not raise exception
telemetry_adapter._log_metric(metric_event)
adapter._log_metric(event) # shouldn't crash
def test_histogram_name_detection_patterns(self, telemetry_adapter):
"""Test various duration metric name patterns"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
duration_metrics = [
"workflow_duration_seconds",
"request_duration_seconds",
"processing_duration_seconds",
"llama_stack_agent_workflow_duration_seconds",
]
for metric_name in duration_metrics:
_GLOBAL_STORAGE["histograms"] = {} # Reset for each test
metric_event = MetricEvent(
trace_id="123",
span_id="456",
metric=metric_name,
value=1.0,
timestamp=1234567890.0,
unit="s",
attributes={},
metric_type=MetricType.HISTOGRAM,
)
telemetry_adapter._log_metric(metric_event)
mock_histogram.record.assert_called()
# Reset call count for negative test
mock_histogram.record.reset_mock()
telemetry_adapter.meter.create_histogram.reset_mock()
# Test non-duration metric
non_duration_metric = MetricEvent(
trace_id="123",
span_id="456",
metric="workflow_total", # No "_duration_seconds" suffix
value=1,
timestamp=1234567890.0,
unit="1",
attributes={},
)
telemetry_adapter._log_metric(non_duration_metric)
# Should not create histogram for non-duration metric
telemetry_adapter.meter.create_histogram.assert_not_called()
mock_histogram.record.assert_not_called()
def test_histogram_global_storage_isolation(self, telemetry_adapter):
"""Test that histogram storage doesn't interfere with counters"""
mock_histogram = Mock()
def test_histogram_vs_counter_by_type(self, adapter):
mock_hist = Mock()
mock_counter = Mock()
adapter.meter.create_histogram.return_value = mock_hist
adapter.meter.create_counter.return_value = mock_counter
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
telemetry_adapter.meter.create_counter.return_value = mock_counter
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
_GLOBAL_STORAGE["counters"] = {}
# Create histogram
duration_metric = MetricEvent(
# histogram metric
hist_event = MetricEvent(
trace_id="123",
span_id="456",
metric="workflow_duration_seconds",
value=1.0,
timestamp=1234567890.0,
unit="s",
attributes={},
metric_type=MetricType.HISTOGRAM,
)
adapter._log_metric(hist_event)
mock_hist.record.assert_called()
# counter metric (default type)
counter_event = MetricEvent(
trace_id="123",
span_id="456",
metric="workflow_total",
value=1,
timestamp=1234567890.0,
unit="1",
attributes={},
)
adapter._log_metric(counter_event)
mock_counter.add.assert_called()
def test_storage_separation(self, adapter):
mock_hist = Mock()
mock_counter = Mock()
adapter.meter.create_histogram.return_value = mock_hist
adapter.meter.create_counter.return_value = mock_counter
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
_GLOBAL_STORAGE["counters"] = {}
# create both types
hist_event = MetricEvent(
trace_id="123",
span_id="456",
metric="test_duration_seconds",
@ -248,10 +206,7 @@ class TestAgentMetricsHistogram:
attributes={},
metric_type=MetricType.HISTOGRAM,
)
telemetry_adapter._log_metric(duration_metric)
# Create counter
counter_metric = MetricEvent(
counter_event = MetricEvent(
trace_id="123",
span_id="456",
metric="test_counter",
@ -260,33 +215,30 @@ class TestAgentMetricsHistogram:
unit="1",
attributes={},
)
telemetry_adapter._log_metric(counter_metric)
# Verify both were created and stored separately
adapter._log_metric(hist_event)
adapter._log_metric(counter_event)
# check they're stored separately
assert "test_duration_seconds" in _GLOBAL_STORAGE["histograms"]
assert "test_counter" in _GLOBAL_STORAGE["counters"]
assert "test_duration_seconds" not in _GLOBAL_STORAGE["counters"]
assert "test_counter" not in _GLOBAL_STORAGE["histograms"]
def test_histogram_buckets_parameter_ignored(self, telemetry_adapter):
"""Test that buckets parameter doesn't affect histogram creation (OpenTelemetry handles buckets internally)"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
def test_histogram_uses_views_for_buckets(self, adapter):
mock_hist = Mock()
adapter.meter.create_histogram.return_value = mock_hist
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
# Call with buckets parameter
result = telemetry_adapter._get_or_create_histogram(
"test_histogram", "s", buckets=[0.1, 0.5, 1.0, 5.0, 10.0, 25.0, 50.0, 100.0]
)
result = adapter._get_or_create_histogram("test_histogram", "s")
# Buckets are not passed to OpenTelemetry create_histogram
telemetry_adapter.meter.create_histogram.assert_called_once_with(
# buckets come from otel views, not create_histogram params
adapter.meter.create_histogram.assert_called_once_with(
name="test_histogram",
unit="s",
description="Histogram for test_histogram",
description="test histogram",
)
assert result == mock_histogram
assert result == mock_hist