chore: Consistent naming for VectorIO providers (#1023)

# What does this PR do?

This changes all VectorIO providers classes to follow the pattern
`<ProviderName>VectorIOConfig` and `<ProviderName>VectorIOAdapter`. All
API endpoints for VectorIOs are currently consistent with `/vector-io`.

Note that API endpoint for VectorDB stay unchanged as `/vector-dbs`. 

## Test Plan

I don't have a way to test all providers. This is a simple renaming so
things should work as expected.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
This commit is contained in:
Yuan Tang 2025-02-13 13:15:49 -05:00 committed by GitHub
parent e4a1579e63
commit 8ff27b58fa
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
34 changed files with 85 additions and 86 deletions

View file

@ -13,8 +13,8 @@ from typing import (
Literal, Literal,
Optional, Optional,
Protocol, Protocol,
runtime_checkable,
Union, Union,
runtime_checkable,
) )
from llama_models.llama3.api.datatypes import Primitive from llama_models.llama3.api.datatypes import Primitive

View file

@ -8,10 +8,10 @@ from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import ChromaInlineImplConfig from .config import ChromaVectorIOConfig
async def get_provider_impl(config: ChromaInlineImplConfig, deps: Dict[Api, ProviderSpec]): async def get_provider_impl(config: ChromaVectorIOConfig, deps: Dict[Api, ProviderSpec]):
from llama_stack.providers.remote.vector_io.chroma.chroma import ( from llama_stack.providers.remote.vector_io.chroma.chroma import (
ChromaVectorIOAdapter, ChromaVectorIOAdapter,
) )

View file

@ -9,7 +9,7 @@ from typing import Any, Dict
from pydantic import BaseModel from pydantic import BaseModel
class ChromaInlineImplConfig(BaseModel): class ChromaVectorIOConfig(BaseModel):
db_path: str db_path: str
@classmethod @classmethod

View file

@ -8,14 +8,14 @@ from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import FaissImplConfig from .config import FaissVectorIOConfig
async def get_provider_impl(config: FaissImplConfig, deps: Dict[Api, ProviderSpec]): async def get_provider_impl(config: FaissVectorIOConfig, deps: Dict[Api, ProviderSpec]):
from .faiss import FaissVectorIOImpl from .faiss import FaissVectorIOAdapter
assert isinstance(config, FaissImplConfig), f"Unexpected config type: {type(config)}" assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = FaissVectorIOImpl(config, deps[Api.inference]) impl = FaissVectorIOAdapter(config, deps[Api.inference])
await impl.initialize() await impl.initialize()
return impl return impl

View file

@ -16,7 +16,7 @@ from llama_stack.providers.utils.kvstore.config import (
@json_schema_type @json_schema_type
class FaissImplConfig(BaseModel): class FaissVectorIOConfig(BaseModel):
kvstore: KVStoreConfig kvstore: KVStoreConfig
@classmethod @classmethod

View file

@ -24,7 +24,7 @@ from llama_stack.providers.utils.memory.vector_store import (
VectorDBWithIndex, VectorDBWithIndex,
) )
from .config import FaissImplConfig from .config import FaissVectorIOConfig
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -112,8 +112,8 @@ class FaissIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=chunks, scores=scores) return QueryChunksResponse(chunks=chunks, scores=scores)
class FaissVectorIOImpl(VectorIO, VectorDBsProtocolPrivate): class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
def __init__(self, config: FaissImplConfig, inference_api: Api.inference) -> None: def __init__(self, config: FaissVectorIOConfig, inference_api: Api.inference) -> None:
self.config = config self.config = config
self.inference_api = inference_api self.inference_api = inference_api
self.cache = {} self.cache = {}

View file

@ -8,10 +8,10 @@ from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import ChromaRemoteImplConfig from .config import ChromaVectorIOConfig
async def get_adapter_impl(config: ChromaRemoteImplConfig, deps: Dict[Api, ProviderSpec]): async def get_adapter_impl(config: ChromaVectorIOConfig, deps: Dict[Api, ProviderSpec]):
from .chroma import ChromaVectorIOAdapter from .chroma import ChromaVectorIOAdapter
impl = ChromaVectorIOAdapter(config, deps[Api.inference]) impl = ChromaVectorIOAdapter(config, deps[Api.inference])

View file

@ -16,13 +16,12 @@ from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.chroma import ChromaInlineImplConfig
from llama_stack.providers.utils.memory.vector_store import ( from llama_stack.providers.utils.memory.vector_store import (
EmbeddingIndex, EmbeddingIndex,
VectorDBWithIndex, VectorDBWithIndex,
) )
from .config import ChromaRemoteImplConfig from .config import ChromaVectorIOConfig
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
@ -89,7 +88,7 @@ class ChromaIndex(EmbeddingIndex):
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate): class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
def __init__( def __init__(
self, self,
config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig], config: Union[ChromaVectorIOConfig, ChromaVectorIOConfig],
inference_api: Api.inference, inference_api: Api.inference,
) -> None: ) -> None:
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}") log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
@ -100,7 +99,7 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
self.cache = {} self.cache = {}
async def initialize(self) -> None: async def initialize(self) -> None:
if isinstance(self.config, ChromaRemoteImplConfig): if isinstance(self.config, ChromaVectorIOConfig):
log.info(f"Connecting to Chroma server at: {self.config.url}") log.info(f"Connecting to Chroma server at: {self.config.url}")
url = self.config.url.rstrip("/") url = self.config.url.rstrip("/")
parsed = urlparse(url) parsed = urlparse(url)

View file

@ -9,7 +9,7 @@ from typing import Any, Dict
from pydantic import BaseModel from pydantic import BaseModel
class ChromaRemoteImplConfig(BaseModel): class ChromaVectorIOConfig(BaseModel):
url: str url: str
@classmethod @classmethod

View file

@ -8,12 +8,12 @@ from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import PGVectorConfig from .config import PGVectorVectorIOConfig
async def get_adapter_impl(config: PGVectorConfig, deps: Dict[Api, ProviderSpec]): async def get_adapter_impl(config: PGVectorVectorIOConfig, deps: Dict[Api, ProviderSpec]):
from .pgvector import PGVectorVectorDBAdapter from .pgvector import PGVectorVectorIOAdapter
impl = PGVectorVectorDBAdapter(config, deps[Api.inference]) impl = PGVectorVectorIOAdapter(config, deps[Api.inference])
await impl.initialize() await impl.initialize()
return impl return impl

View file

@ -9,7 +9,7 @@ from pydantic import BaseModel, Field
@json_schema_type @json_schema_type
class PGVectorConfig(BaseModel): class PGVectorVectorIOConfig(BaseModel):
host: str = Field(default="localhost") host: str = Field(default="localhost")
port: int = Field(default=5432) port: int = Field(default=5432)
db: str = Field(default="postgres") db: str = Field(default="postgres")

View file

@ -22,7 +22,7 @@ from llama_stack.providers.utils.memory.vector_store import (
VectorDBWithIndex, VectorDBWithIndex,
) )
from .config import PGVectorConfig from .config import PGVectorVectorIOConfig
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
@ -121,8 +121,8 @@ class PGVectorIndex(EmbeddingIndex):
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}") cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
class PGVectorVectorDBAdapter(VectorIO, VectorDBsProtocolPrivate): class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
def __init__(self, config: PGVectorConfig, inference_api: Api.inference) -> None: def __init__(self, config: PGVectorVectorIOConfig, inference_api: Api.inference) -> None:
self.config = config self.config = config
self.inference_api = inference_api self.inference_api = inference_api
self.conn = None self.conn = None

View file

@ -8,12 +8,12 @@ from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import QdrantConfig from .config import QdrantVectorIOConfig
async def get_adapter_impl(config: QdrantConfig, deps: Dict[Api, ProviderSpec]): async def get_adapter_impl(config: QdrantVectorIOConfig, deps: Dict[Api, ProviderSpec]):
from .qdrant import QdrantVectorDBAdapter from .qdrant import QdrantVectorIOAdapter
impl = QdrantVectorDBAdapter(config, deps[Api.inference]) impl = QdrantVectorIOAdapter(config, deps[Api.inference])
await impl.initialize() await impl.initialize()
return impl return impl

View file

@ -11,7 +11,7 @@ from pydantic import BaseModel
@json_schema_type @json_schema_type
class QdrantConfig(BaseModel): class QdrantVectorIOConfig(BaseModel):
location: Optional[str] = None location: Optional[str] = None
url: Optional[str] = None url: Optional[str] = None
port: Optional[int] = 6333 port: Optional[int] = 6333

View file

@ -21,7 +21,7 @@ from llama_stack.providers.utils.memory.vector_store import (
VectorDBWithIndex, VectorDBWithIndex,
) )
from .config import QdrantConfig from .config import QdrantVectorIOConfig
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
CHUNK_ID_KEY = "_chunk_id" CHUNK_ID_KEY = "_chunk_id"
@ -98,8 +98,8 @@ class QdrantIndex(EmbeddingIndex):
await self.client.delete_collection(collection_name=self.collection_name) await self.client.delete_collection(collection_name=self.collection_name)
class QdrantVectorDBAdapter(VectorIO, VectorDBsProtocolPrivate): class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None: def __init__(self, config: QdrantVectorIOConfig, inference_api: Api.inference) -> None:
self.config = config self.config = config
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True)) self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
self.cache = {} self.cache = {}

View file

@ -6,12 +6,12 @@
from typing import Any from typing import Any
from .config import SampleConfig from .config import SampleVectorIOConfig
async def get_adapter_impl(config: SampleConfig, _deps) -> Any: async def get_adapter_impl(config: SampleVectorIOConfig, _deps) -> Any:
from .sample import SampleMemoryImpl from .sample import SampleVectorIOImpl
impl = SampleMemoryImpl(config) impl = SampleVectorIOImpl(config)
await impl.initialize() await impl.initialize()
return impl return impl

View file

@ -7,6 +7,6 @@
from pydantic import BaseModel from pydantic import BaseModel
class SampleConfig(BaseModel): class SampleVectorIOConfig(BaseModel):
host: str = "localhost" host: str = "localhost"
port: int = 9999 port: int = 9999

View file

@ -7,11 +7,11 @@
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import VectorIO from llama_stack.apis.vector_io import VectorIO
from .config import SampleConfig from .config import SampleVectorIOConfig
class SampleMemoryImpl(VectorIO): class SampleVectorIOImpl(VectorIO):
def __init__(self, config: SampleConfig): def __init__(self, config: SampleVectorIOConfig):
self.config = config self.config = config
async def register_vector_db(self, vector_db: VectorDB) -> None: async def register_vector_db(self, vector_db: VectorDB) -> None:

View file

@ -8,12 +8,12 @@ from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import WeaviateConfig, WeaviateRequestProviderData # noqa: F401 from .config import WeaviateRequestProviderData, WeaviateVectorIOConfig # noqa: F401
async def get_adapter_impl(config: WeaviateConfig, deps: Dict[Api, ProviderSpec]): async def get_adapter_impl(config: WeaviateVectorIOConfig, deps: Dict[Api, ProviderSpec]):
from .weaviate import WeaviateMemoryAdapter from .weaviate import WeaviateVectorIOAdapter
impl = WeaviateMemoryAdapter(config, deps[Api.inference]) impl = WeaviateVectorIOAdapter(config, deps[Api.inference])
await impl.initialize() await impl.initialize()
return impl return impl

View file

@ -12,5 +12,5 @@ class WeaviateRequestProviderData(BaseModel):
weaviate_cluster_url: str weaviate_cluster_url: str
class WeaviateConfig(BaseModel): class WeaviateVectorIOConfig(BaseModel):
pass pass

View file

@ -23,7 +23,7 @@ from llama_stack.providers.utils.memory.vector_store import (
VectorDBWithIndex, VectorDBWithIndex,
) )
from .config import WeaviateConfig, WeaviateRequestProviderData from .config import WeaviateRequestProviderData, WeaviateVectorIOConfig
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
@ -85,12 +85,12 @@ class WeaviateIndex(EmbeddingIndex):
collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids)) collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids))
class WeaviateMemoryAdapter( class WeaviateVectorIOAdapter(
VectorIO, VectorIO,
NeedsRequestProviderData, NeedsRequestProviderData,
VectorDBsProtocolPrivate, VectorDBsProtocolPrivate,
): ):
def __init__(self, config: WeaviateConfig, inference_api: Api.inference) -> None: def __init__(self, config: WeaviateVectorIOConfig, inference_api: Api.inference) -> None:
self.config = config self.config = config
self.inference_api = inference_api self.inference_api = inference_api
self.client_cache = {} self.client_cache = {}

View file

@ -12,12 +12,12 @@ import pytest_asyncio
from llama_stack.apis.models import ModelInput, ModelType from llama_stack.apis.models import ModelInput, ModelType
from llama_stack.distribution.datatypes import Api, Provider from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.vector_io.chroma import ChromaInlineImplConfig from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
from llama_stack.providers.inline.vector_io.faiss import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss import FaissVectorIOConfig
from llama_stack.providers.inline.vector_io.sqlite_vec import SQLiteVectorIOConfig from llama_stack.providers.inline.vector_io.sqlite_vec import SQLiteVectorIOConfig
from llama_stack.providers.remote.vector_io.chroma import ChromaRemoteImplConfig from llama_stack.providers.remote.vector_io.chroma import ChromaVectorIOConfig
from llama_stack.providers.remote.vector_io.pgvector import PGVectorConfig from llama_stack.providers.remote.vector_io.pgvector import PGVectorVectorIOConfig
from llama_stack.providers.remote.vector_io.weaviate import WeaviateConfig from llama_stack.providers.remote.vector_io.weaviate import WeaviateVectorIOConfig
from llama_stack.providers.tests.resolver import construct_stack_for_test from llama_stack.providers.tests.resolver import construct_stack_for_test
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
@ -45,7 +45,7 @@ def vector_io_faiss() -> ProviderFixture:
Provider( Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig( config=FaissVectorIOConfig(
kvstore=SqliteKVStoreConfig(db_path=temp_file.name).model_dump(), kvstore=SqliteKVStoreConfig(db_path=temp_file.name).model_dump(),
).model_dump(), ).model_dump(),
) )
@ -76,7 +76,7 @@ def vector_io_pgvector() -> ProviderFixture:
Provider( Provider(
provider_id="pgvector", provider_id="pgvector",
provider_type="remote::pgvector", provider_type="remote::pgvector",
config=PGVectorConfig( config=PGVectorVectorIOConfig(
host=os.getenv("PGVECTOR_HOST", "localhost"), host=os.getenv("PGVECTOR_HOST", "localhost"),
port=os.getenv("PGVECTOR_PORT", 5432), port=os.getenv("PGVECTOR_PORT", 5432),
db=get_env_or_fail("PGVECTOR_DB"), db=get_env_or_fail("PGVECTOR_DB"),
@ -95,7 +95,7 @@ def vector_io_weaviate() -> ProviderFixture:
Provider( Provider(
provider_id="weaviate", provider_id="weaviate",
provider_type="remote::weaviate", provider_type="remote::weaviate",
config=WeaviateConfig().model_dump(), config=WeaviateVectorIOConfig().model_dump(),
) )
], ],
provider_data=dict( provider_data=dict(
@ -109,12 +109,12 @@ def vector_io_weaviate() -> ProviderFixture:
def vector_io_chroma() -> ProviderFixture: def vector_io_chroma() -> ProviderFixture:
url = os.getenv("CHROMA_URL") url = os.getenv("CHROMA_URL")
if url: if url:
config = ChromaRemoteImplConfig(url=url) config = ChromaVectorIOConfig(url=url)
provider_type = "remote::chromadb" provider_type = "remote::chromadb"
else: else:
if not os.getenv("CHROMA_DB_PATH"): if not os.getenv("CHROMA_DB_PATH"):
raise ValueError("CHROMA_DB_PATH or CHROMA_URL must be set") raise ValueError("CHROMA_DB_PATH or CHROMA_URL must be set")
config = ChromaInlineImplConfig(db_path=os.getenv("CHROMA_DB_PATH")) config = InlineChromaVectorIOConfig(db_path=os.getenv("CHROMA_DB_PATH"))
provider_type = "inline::chromadb" provider_type = "inline::chromadb"
return ProviderFixture( return ProviderFixture(
providers=[ providers=[

View file

@ -10,7 +10,7 @@ from llama_models.sku_list import all_registered_models
from llama_stack.apis.models import ModelInput from llama_stack.apis.models import ModelInput
from llama_stack.distribution.datatypes import Provider, ToolGroupInput from llama_stack.distribution.datatypes import Provider, ToolGroupInput
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.bedrock.bedrock import MODEL_ALIASES from llama_stack.providers.remote.inference.bedrock.bedrock import MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -37,7 +37,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
core_model_to_hf_repo = {m.descriptor(): m.huggingface_repo for m in all_registered_models()} core_model_to_hf_repo = {m.descriptor(): m.huggingface_repo for m in all_registered_models()}

View file

@ -13,7 +13,7 @@ from llama_stack.distribution.datatypes import ModelInput, Provider, ToolGroupIn
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.cerebras.cerebras import model_aliases from llama_stack.providers.remote.inference.cerebras.cerebras import model_aliases
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -69,7 +69,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
default_tool_groups = [ default_tool_groups = [
ToolGroupInput( ToolGroupInput(

View file

@ -18,7 +18,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
from llama_stack.providers.remote.inference.fireworks.fireworks import MODEL_ALIASES from llama_stack.providers.remote.inference.fireworks.fireworks import MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -58,7 +58,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
core_model_to_hf_repo = {m.descriptor(): m.huggingface_repo for m in all_registered_models()} core_model_to_hf_repo = {m.descriptor(): m.huggingface_repo for m in all_registered_models()}

View file

@ -14,7 +14,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.tgi import InferenceEndpointImplConfig from llama_stack.providers.remote.inference.tgi import InferenceEndpointImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -51,7 +51,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
inference_model = ModelInput( inference_model = ModelInput(

View file

@ -14,7 +14,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.tgi import InferenceAPIImplConfig from llama_stack.providers.remote.inference.tgi import InferenceAPIImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -52,7 +52,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
inference_model = ModelInput( inference_model = ModelInput(

View file

@ -19,7 +19,7 @@ from llama_stack.providers.inline.inference.meta_reference import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -58,7 +58,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
inference_model = ModelInput( inference_model = ModelInput(

View file

@ -14,7 +14,7 @@ from llama_stack.providers.inline.inference.meta_reference import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -67,7 +67,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
inference_model = ModelInput( inference_model = ModelInput(

View file

@ -16,7 +16,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -53,7 +53,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider_faiss = Provider( vector_io_provider_faiss = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
vector_io_provider_sqlite = Provider( vector_io_provider_sqlite = Provider(
provider_id="sqlite_vec", provider_id="sqlite_vec",

View file

@ -16,7 +16,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -55,7 +55,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
inference_model = ModelInput( inference_model = ModelInput(

View file

@ -16,7 +16,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.tgi import TGIImplConfig from llama_stack.providers.remote.inference.tgi import TGIImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -55,7 +55,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
inference_model = ModelInput( inference_model = ModelInput(

View file

@ -18,7 +18,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import ( from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.together import TogetherImplConfig from llama_stack.providers.remote.inference.together import TogetherImplConfig
from llama_stack.providers.remote.inference.together.together import MODEL_ALIASES from llama_stack.providers.remote.inference.together.together import MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -51,7 +51,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
embedding_provider = Provider( embedding_provider = Provider(
provider_id="sentence-transformers", provider_id="sentence-transformers",

View file

@ -10,7 +10,7 @@ from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig, SentenceTransformersInferenceConfig,
) )
from llama_stack.providers.inline.inference.vllm import VLLMConfig from llama_stack.providers.inline.inference.vllm import VLLMConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.templates.template import ( from llama_stack.templates.template import (
DistributionTemplate, DistributionTemplate,
RunConfigSettings, RunConfigSettings,
@ -46,7 +46,7 @@ def get_distribution_template() -> DistributionTemplate:
vector_io_provider = Provider( vector_io_provider = Provider(
provider_id="faiss", provider_id="faiss",
provider_type="inline::faiss", provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"), config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
) )
embedding_provider = Provider( embedding_provider = Provider(
provider_id="sentence-transformers", provider_id="sentence-transformers",