This commit is contained in:
Justin 2025-10-03 03:23:48 -07:00 committed by GitHub
commit 9164d10ceb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -3,71 +3,175 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator
import asyncio
from typing import Any
from openai import OpenAI
from openai import AsyncOpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
# from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper, build_hf_repo_model_entry
from llama_stack.apis.inference import *
from llama_stack.apis.inference import (
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.apis.common.content_types import InterleavedContentItem
from llama_stack.apis.models import Model, ModelType
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
interleaved_content_as_str,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import RunpodImplConfig
# https://docs.runpod.io/serverless/vllm/overview#compatible-models
# https://github.com/runpod-workers/worker-vllm/blob/main/README.md#compatible-model-architectures
RUNPOD_SUPPORTED_MODELS = {
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
}
SAFETY_MODELS_ENTRIES = []
# Create MODEL_ENTRIES from RUNPOD_SUPPORTED_MODELS for compatibility with starter template
MODEL_ENTRIES = [
build_hf_repo_model_entry(provider_model_id, model_descriptor)
for provider_model_id, model_descriptor in RUNPOD_SUPPORTED_MODELS.items()
] + SAFETY_MODELS_ENTRIES
MODEL_ENTRIES = []
class RunpodInferenceAdapter(
OpenAIMixin,
ModelRegistryHelper,
Inference,
OpenAIChatCompletionToLlamaStackMixin,
):
"""
Adapter for RunPod's OpenAI-compatible API endpoints.
Supports VLLM for serverless endpoint self-hosted or public endpoints.
Can work with any runpod endpoints that support OpenAI-compatible API
"""
def __init__(self, config: RunpodImplConfig) -> None:
ModelRegistryHelper.__init__(self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS)
OpenAIMixin.__init__(self)
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
self.config = config
def get_api_key(self) -> str:
"""Get API key for OpenAI client."""
return self.config.api_token
def get_base_url(self) -> str:
"""Get base URL for OpenAI client."""
return self.config.url
async def initialize(self) -> None:
return
pass
async def shutdown(self) -> None:
pass
async def chat_completion(
def get_extra_client_params(self) -> dict[str, Any]:
"""Override to add RunPod-specific client parameters if needed."""
return {}
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
):
"""Override to add RunPod-specific stream_options requirement."""
if stream and not stream_options:
stream_options = {"include_usage": True}
return await super().openai_chat_completion(
model=model,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
async def register_model(self, model: Model) -> Model:
"""
Pass-through registration - accepts any model that the RunPod endpoint serves.
In the .yaml file the model: can be defined as example
models:
- metadata: {}
model_id: qwen3-32b-awq
model_type: llm
provider_id: runpod
provider_model_id: Qwen/Qwen3-32B-AWQ
"""
return model
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
if sampling_params is None:
sampling_params = SamplingParams()
# Resolve model_id to provider_resource_id
model = await self.model_store.get_model(model_id)
provider_model_id = model.provider_resource_id or model_id
request = CompletionRequest(
model=provider_model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request, self.client)
else:
return await self._nonstream_completion(request, self.client)
async def chat_completion(
self,
model_id: str,
messages: list[Message],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
@ -77,11 +181,17 @@ class RunpodInferenceAdapter(
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> AsyncGenerator:
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
"""Process chat completion requests using RunPod's OpenAI-compatible API."""
if sampling_params is None:
sampling_params = SamplingParams()
# Resolve model_id to provider_resource_id
model = await self.model_store.get_model(model_id)
provider_model_id = model.provider_resource_id or model_id
request = ChatCompletionRequest(
model=model,
model=provider_model_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
@ -90,39 +200,100 @@ class RunpodInferenceAdapter(
tool_config=tool_config,
)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
if stream:
return self._stream_chat_completion(request, client)
return self._stream_chat_completion(request, self.client)
else:
return await self._nonstream_chat_completion(request, client)
return await self._nonstream_chat_completion(request, self.client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
self, request: ChatCompletionRequest, client: AsyncOpenAI
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
params = await self._get_chat_params(request)
# Make actual RunPod API call
r = await client.chat.completions.create(**params)
return process_chat_completion_response(r, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator:
params = self._get_params(request)
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: AsyncOpenAI
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
params = await self._get_chat_params(request)
# Make actual RunPod API call for streaming
stream = await client.chat.completions.create(**params)
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": self.map_to_provider_model(request.model),
"prompt": chat_completion_request_to_prompt(request),
async def _get_chat_params(self, request: ChatCompletionRequest) -> dict:
"""Convert Llama Stack request to RunPod API parameters."""
messages = [await convert_message_to_openai_dict(m, download=False) for m in request.messages]
params = {
"model": request.model,
"messages": messages,
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
if request.stream:
params["stream_options"] = {"include_usage": True}
return params
async def _nonstream_completion(
self, request: CompletionRequest, client: AsyncOpenAI
) -> CompletionResponse:
params = await self._get_completion_params(request)
# Make actual RunPod API call
r = await client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(
self, request: CompletionRequest, client: AsyncOpenAI
) -> AsyncGenerator:
params = await self._get_completion_params(request)
# Make actual RunPod API call for streaming
stream = await client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
async def _get_completion_params(self, request: CompletionRequest) -> dict:
"""Convert Llama Stack request to RunPod API parameters."""
params = {
"model": request.model,
"prompt": await completion_request_to_prompt(request),
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
if request.stream:
params["stream_options"] = {"include_usage": True}
return params
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
# Resolve model_id to provider_resource_id
model_obj = await self.model_store.get_model(model_id)
model = model_obj.provider_resource_id or model_id
kwargs = {}
if output_dimension:
kwargs["dimensions"] = output_dimension
response = await self.client.embeddings.create(
model=model,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,
@ -131,4 +302,16 @@ class RunpodInferenceAdapter(
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
# Resolve model_id to provider_resource_id
model_obj = await self.model_store.get_model(model)
provider_model_id = model_obj.provider_resource_id or model
response = await self.client.embeddings.create(
model=provider_model_id,
input=input,
encoding_format=encoding_format,
dimensions=dimensions,
user=user,
)
return response