mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
Merge 813ff44659
into 4dfbe46954
This commit is contained in:
commit
9164d10ceb
1 changed files with 242 additions and 59 deletions
|
@ -3,71 +3,175 @@
|
||||||
#
|
#
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from collections.abc import AsyncGenerator
|
from collections.abc import AsyncGenerator
|
||||||
|
import asyncio
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
from openai import OpenAI
|
from openai import AsyncOpenAI
|
||||||
|
|
||||||
from llama_stack.apis.inference import * # noqa: F403
|
from llama_stack.apis.inference import *
|
||||||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
from llama_stack.apis.inference import (
|
||||||
|
OpenAIMessageParam,
|
||||||
# from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
OpenAIResponseFormatParam,
|
||||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper, build_hf_repo_model_entry
|
)
|
||||||
|
from llama_stack.apis.common.content_types import InterleavedContentItem
|
||||||
|
from llama_stack.apis.models import Model, ModelType
|
||||||
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||||
from llama_stack.providers.utils.inference.openai_compat import (
|
from llama_stack.providers.utils.inference.openai_compat import (
|
||||||
OpenAIChatCompletionToLlamaStackMixin,
|
convert_message_to_openai_dict,
|
||||||
get_sampling_options,
|
get_sampling_options,
|
||||||
process_chat_completion_response,
|
process_chat_completion_response,
|
||||||
process_chat_completion_stream_response,
|
process_chat_completion_stream_response,
|
||||||
|
process_completion_response,
|
||||||
|
process_completion_stream_response,
|
||||||
)
|
)
|
||||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||||
chat_completion_request_to_prompt,
|
completion_request_to_prompt,
|
||||||
|
interleaved_content_as_str,
|
||||||
)
|
)
|
||||||
|
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||||
from .config import RunpodImplConfig
|
from .config import RunpodImplConfig
|
||||||
|
|
||||||
# https://docs.runpod.io/serverless/vllm/overview#compatible-models
|
MODEL_ENTRIES = []
|
||||||
# https://github.com/runpod-workers/worker-vllm/blob/main/README.md#compatible-model-architectures
|
|
||||||
RUNPOD_SUPPORTED_MODELS = {
|
|
||||||
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
|
|
||||||
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
|
|
||||||
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
|
|
||||||
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
|
|
||||||
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
|
|
||||||
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
|
|
||||||
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
|
|
||||||
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
|
|
||||||
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
|
|
||||||
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
|
|
||||||
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
|
|
||||||
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
|
|
||||||
}
|
|
||||||
|
|
||||||
SAFETY_MODELS_ENTRIES = []
|
|
||||||
|
|
||||||
# Create MODEL_ENTRIES from RUNPOD_SUPPORTED_MODELS for compatibility with starter template
|
|
||||||
MODEL_ENTRIES = [
|
|
||||||
build_hf_repo_model_entry(provider_model_id, model_descriptor)
|
|
||||||
for provider_model_id, model_descriptor in RUNPOD_SUPPORTED_MODELS.items()
|
|
||||||
] + SAFETY_MODELS_ENTRIES
|
|
||||||
|
|
||||||
|
|
||||||
class RunpodInferenceAdapter(
|
class RunpodInferenceAdapter(
|
||||||
|
OpenAIMixin,
|
||||||
ModelRegistryHelper,
|
ModelRegistryHelper,
|
||||||
Inference,
|
Inference,
|
||||||
OpenAIChatCompletionToLlamaStackMixin,
|
|
||||||
):
|
):
|
||||||
|
"""
|
||||||
|
Adapter for RunPod's OpenAI-compatible API endpoints.
|
||||||
|
Supports VLLM for serverless endpoint self-hosted or public endpoints.
|
||||||
|
Can work with any runpod endpoints that support OpenAI-compatible API
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, config: RunpodImplConfig) -> None:
|
def __init__(self, config: RunpodImplConfig) -> None:
|
||||||
ModelRegistryHelper.__init__(self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS)
|
OpenAIMixin.__init__(self)
|
||||||
|
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||||
self.config = config
|
self.config = config
|
||||||
|
|
||||||
|
def get_api_key(self) -> str:
|
||||||
|
"""Get API key for OpenAI client."""
|
||||||
|
return self.config.api_token
|
||||||
|
|
||||||
|
def get_base_url(self) -> str:
|
||||||
|
"""Get base URL for OpenAI client."""
|
||||||
|
return self.config.url
|
||||||
|
|
||||||
async def initialize(self) -> None:
|
async def initialize(self) -> None:
|
||||||
return
|
pass
|
||||||
|
|
||||||
async def shutdown(self) -> None:
|
async def shutdown(self) -> None:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
async def chat_completion(
|
def get_extra_client_params(self) -> dict[str, Any]:
|
||||||
|
"""Override to add RunPod-specific client parameters if needed."""
|
||||||
|
return {}
|
||||||
|
|
||||||
|
async def openai_chat_completion(
|
||||||
self,
|
self,
|
||||||
model: str,
|
model: str,
|
||||||
|
messages: list[OpenAIMessageParam],
|
||||||
|
frequency_penalty: float | None = None,
|
||||||
|
function_call: str | dict[str, Any] | None = None,
|
||||||
|
functions: list[dict[str, Any]] | None = None,
|
||||||
|
logit_bias: dict[str, float] | None = None,
|
||||||
|
logprobs: bool | None = None,
|
||||||
|
max_completion_tokens: int | None = None,
|
||||||
|
max_tokens: int | None = None,
|
||||||
|
n: int | None = None,
|
||||||
|
parallel_tool_calls: bool | None = None,
|
||||||
|
presence_penalty: float | None = None,
|
||||||
|
response_format: OpenAIResponseFormatParam | None = None,
|
||||||
|
seed: int | None = None,
|
||||||
|
stop: str | list[str] | None = None,
|
||||||
|
stream: bool | None = None,
|
||||||
|
stream_options: dict[str, Any] | None = None,
|
||||||
|
temperature: float | None = None,
|
||||||
|
tool_choice: str | dict[str, Any] | None = None,
|
||||||
|
tools: list[dict[str, Any]] | None = None,
|
||||||
|
top_logprobs: int | None = None,
|
||||||
|
top_p: float | None = None,
|
||||||
|
user: str | None = None,
|
||||||
|
):
|
||||||
|
"""Override to add RunPod-specific stream_options requirement."""
|
||||||
|
if stream and not stream_options:
|
||||||
|
stream_options = {"include_usage": True}
|
||||||
|
|
||||||
|
return await super().openai_chat_completion(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
frequency_penalty=frequency_penalty,
|
||||||
|
function_call=function_call,
|
||||||
|
functions=functions,
|
||||||
|
logit_bias=logit_bias,
|
||||||
|
logprobs=logprobs,
|
||||||
|
max_completion_tokens=max_completion_tokens,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
n=n,
|
||||||
|
parallel_tool_calls=parallel_tool_calls,
|
||||||
|
presence_penalty=presence_penalty,
|
||||||
|
response_format=response_format,
|
||||||
|
seed=seed,
|
||||||
|
stop=stop,
|
||||||
|
stream=stream,
|
||||||
|
stream_options=stream_options,
|
||||||
|
temperature=temperature,
|
||||||
|
tool_choice=tool_choice,
|
||||||
|
tools=tools,
|
||||||
|
top_logprobs=top_logprobs,
|
||||||
|
top_p=top_p,
|
||||||
|
user=user,
|
||||||
|
)
|
||||||
|
|
||||||
|
async def register_model(self, model: Model) -> Model:
|
||||||
|
"""
|
||||||
|
Pass-through registration - accepts any model that the RunPod endpoint serves.
|
||||||
|
In the .yaml file the model: can be defined as example
|
||||||
|
models:
|
||||||
|
- metadata: {}
|
||||||
|
model_id: qwen3-32b-awq
|
||||||
|
model_type: llm
|
||||||
|
provider_id: runpod
|
||||||
|
provider_model_id: Qwen/Qwen3-32B-AWQ
|
||||||
|
"""
|
||||||
|
return model
|
||||||
|
|
||||||
|
async def completion(
|
||||||
|
self,
|
||||||
|
model_id: str,
|
||||||
|
content: InterleavedContent,
|
||||||
|
sampling_params: SamplingParams | None = None,
|
||||||
|
response_format: ResponseFormat | None = None,
|
||||||
|
stream: bool | None = False,
|
||||||
|
logprobs: LogProbConfig | None = None,
|
||||||
|
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||||
|
if sampling_params is None:
|
||||||
|
sampling_params = SamplingParams()
|
||||||
|
|
||||||
|
# Resolve model_id to provider_resource_id
|
||||||
|
model = await self.model_store.get_model(model_id)
|
||||||
|
provider_model_id = model.provider_resource_id or model_id
|
||||||
|
|
||||||
|
request = CompletionRequest(
|
||||||
|
model=provider_model_id,
|
||||||
|
content=content,
|
||||||
|
sampling_params=sampling_params,
|
||||||
|
response_format=response_format,
|
||||||
|
stream=stream,
|
||||||
|
logprobs=logprobs,
|
||||||
|
)
|
||||||
|
|
||||||
|
if stream:
|
||||||
|
return self._stream_completion(request, self.client)
|
||||||
|
else:
|
||||||
|
return await self._nonstream_completion(request, self.client)
|
||||||
|
|
||||||
|
async def chat_completion(
|
||||||
|
self,
|
||||||
|
model_id: str,
|
||||||
messages: list[Message],
|
messages: list[Message],
|
||||||
sampling_params: SamplingParams | None = None,
|
sampling_params: SamplingParams | None = None,
|
||||||
response_format: ResponseFormat | None = None,
|
response_format: ResponseFormat | None = None,
|
||||||
|
@ -77,11 +181,17 @@ class RunpodInferenceAdapter(
|
||||||
stream: bool | None = False,
|
stream: bool | None = False,
|
||||||
logprobs: LogProbConfig | None = None,
|
logprobs: LogProbConfig | None = None,
|
||||||
tool_config: ToolConfig | None = None,
|
tool_config: ToolConfig | None = None,
|
||||||
) -> AsyncGenerator:
|
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||||
|
"""Process chat completion requests using RunPod's OpenAI-compatible API."""
|
||||||
if sampling_params is None:
|
if sampling_params is None:
|
||||||
sampling_params = SamplingParams()
|
sampling_params = SamplingParams()
|
||||||
|
|
||||||
|
# Resolve model_id to provider_resource_id
|
||||||
|
model = await self.model_store.get_model(model_id)
|
||||||
|
provider_model_id = model.provider_resource_id or model_id
|
||||||
|
|
||||||
request = ChatCompletionRequest(
|
request = ChatCompletionRequest(
|
||||||
model=model,
|
model=provider_model_id,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
sampling_params=sampling_params,
|
sampling_params=sampling_params,
|
||||||
tools=tools or [],
|
tools=tools or [],
|
||||||
|
@ -90,39 +200,100 @@ class RunpodInferenceAdapter(
|
||||||
tool_config=tool_config,
|
tool_config=tool_config,
|
||||||
)
|
)
|
||||||
|
|
||||||
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
|
||||||
if stream:
|
if stream:
|
||||||
return self._stream_chat_completion(request, client)
|
return self._stream_chat_completion(request, self.client)
|
||||||
else:
|
else:
|
||||||
return await self._nonstream_chat_completion(request, client)
|
return await self._nonstream_chat_completion(request, self.client)
|
||||||
|
|
||||||
async def _nonstream_chat_completion(
|
async def _nonstream_chat_completion(
|
||||||
self, request: ChatCompletionRequest, client: OpenAI
|
self, request: ChatCompletionRequest, client: AsyncOpenAI
|
||||||
) -> ChatCompletionResponse:
|
) -> ChatCompletionResponse:
|
||||||
params = self._get_params(request)
|
params = await self._get_chat_params(request)
|
||||||
r = client.completions.create(**params)
|
# Make actual RunPod API call
|
||||||
|
r = await client.chat.completions.create(**params)
|
||||||
return process_chat_completion_response(r, request)
|
return process_chat_completion_response(r, request)
|
||||||
|
|
||||||
async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator:
|
async def _stream_chat_completion(
|
||||||
params = self._get_params(request)
|
self, request: ChatCompletionRequest, client: AsyncOpenAI
|
||||||
|
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||||
async def _to_async_generator():
|
params = await self._get_chat_params(request)
|
||||||
s = client.completions.create(**params)
|
# Make actual RunPod API call for streaming
|
||||||
for chunk in s:
|
stream = await client.chat.completions.create(**params)
|
||||||
yield chunk
|
|
||||||
|
|
||||||
stream = _to_async_generator()
|
|
||||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||||
yield chunk
|
yield chunk
|
||||||
|
|
||||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
async def _get_chat_params(self, request: ChatCompletionRequest) -> dict:
|
||||||
return {
|
"""Convert Llama Stack request to RunPod API parameters."""
|
||||||
"model": self.map_to_provider_model(request.model),
|
messages = [await convert_message_to_openai_dict(m, download=False) for m in request.messages]
|
||||||
"prompt": chat_completion_request_to_prompt(request),
|
|
||||||
|
params = {
|
||||||
|
"model": request.model,
|
||||||
|
"messages": messages,
|
||||||
"stream": request.stream,
|
"stream": request.stream,
|
||||||
**get_sampling_options(request.sampling_params),
|
**get_sampling_options(request.sampling_params),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if request.stream:
|
||||||
|
params["stream_options"] = {"include_usage": True}
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
async def _nonstream_completion(
|
||||||
|
self, request: CompletionRequest, client: AsyncOpenAI
|
||||||
|
) -> CompletionResponse:
|
||||||
|
params = await self._get_completion_params(request)
|
||||||
|
# Make actual RunPod API call
|
||||||
|
r = await client.completions.create(**params)
|
||||||
|
return process_completion_response(r)
|
||||||
|
|
||||||
|
async def _stream_completion(
|
||||||
|
self, request: CompletionRequest, client: AsyncOpenAI
|
||||||
|
) -> AsyncGenerator:
|
||||||
|
params = await self._get_completion_params(request)
|
||||||
|
# Make actual RunPod API call for streaming
|
||||||
|
stream = await client.completions.create(**params)
|
||||||
|
async for chunk in process_completion_stream_response(stream):
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
async def _get_completion_params(self, request: CompletionRequest) -> dict:
|
||||||
|
"""Convert Llama Stack request to RunPod API parameters."""
|
||||||
|
params = {
|
||||||
|
"model": request.model,
|
||||||
|
"prompt": await completion_request_to_prompt(request),
|
||||||
|
"stream": request.stream,
|
||||||
|
**get_sampling_options(request.sampling_params),
|
||||||
|
}
|
||||||
|
|
||||||
|
if request.stream:
|
||||||
|
params["stream_options"] = {"include_usage": True}
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
async def embeddings(
|
||||||
|
self,
|
||||||
|
model_id: str,
|
||||||
|
contents: list[str] | list[InterleavedContentItem],
|
||||||
|
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||||
|
output_dimension: int | None = None,
|
||||||
|
task_type: EmbeddingTaskType | None = None,
|
||||||
|
) -> EmbeddingsResponse:
|
||||||
|
# Resolve model_id to provider_resource_id
|
||||||
|
model_obj = await self.model_store.get_model(model_id)
|
||||||
|
model = model_obj.provider_resource_id or model_id
|
||||||
|
|
||||||
|
kwargs = {}
|
||||||
|
if output_dimension:
|
||||||
|
kwargs["dimensions"] = output_dimension
|
||||||
|
|
||||||
|
response = await self.client.embeddings.create(
|
||||||
|
model=model,
|
||||||
|
input=[interleaved_content_as_str(content) for content in contents],
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = [data.embedding for data in response.data]
|
||||||
|
return EmbeddingsResponse(embeddings=embeddings)
|
||||||
|
|
||||||
async def openai_embeddings(
|
async def openai_embeddings(
|
||||||
self,
|
self,
|
||||||
model: str,
|
model: str,
|
||||||
|
@ -131,4 +302,16 @@ class RunpodInferenceAdapter(
|
||||||
dimensions: int | None = None,
|
dimensions: int | None = None,
|
||||||
user: str | None = None,
|
user: str | None = None,
|
||||||
) -> OpenAIEmbeddingsResponse:
|
) -> OpenAIEmbeddingsResponse:
|
||||||
raise NotImplementedError()
|
# Resolve model_id to provider_resource_id
|
||||||
|
model_obj = await self.model_store.get_model(model)
|
||||||
|
provider_model_id = model_obj.provider_resource_id or model
|
||||||
|
|
||||||
|
response = await self.client.embeddings.create(
|
||||||
|
model=provider_model_id,
|
||||||
|
input=input,
|
||||||
|
encoding_format=encoding_format,
|
||||||
|
dimensions=dimensions,
|
||||||
|
user=user,
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue