fix(tests): address comments on telemetry test pr and support metrics

This commit is contained in:
Emilio Garcia 2025-10-14 19:17:50 -04:00
parent 83a5c9ee7b
commit 9198c4d5e2
3 changed files with 84 additions and 48 deletions

View file

@ -41,8 +41,6 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
"""Comprehensive validation of telemetry data format including spans and metrics."""
collector = mock_otlp_collector
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}],
@ -51,31 +49,48 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
stream=False,
)
assert response
assert response.usage.get("prompt_tokens") > 0
assert response.usage.get("completion_tokens") > 0
assert response.usage.get("total_tokens") > 0
# Verify spans
spans = collector.get_spans()
spans = mock_otlp_collector.get_spans()
assert len(spans) == 5
for span in spans:
print(f"Span: {span.attributes}")
if span.attributes.get("__autotraced__"):
assert span.attributes.get("__class__") and span.attributes.get("__method__")
assert span.attributes.get("__type__") in ["async", "sync", "async_generator"]
if span.attributes.get("__args__"):
args = json.loads(span.attributes.get("__args__"))
# The parameter is 'model' in openai_chat_completion, not 'model_id'
if "model" in args:
attrs = span.attributes
assert attrs is not None
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
is_root_span = attrs.get("__root__") is True
if is_root_span:
# Root spans have different attributes
assert attrs.get("__location__") in ["library_client", "server"]
else:
# Non-root spans are created by @trace_protocol decorator
assert attrs.get("__autotraced__")
assert attrs.get("__class__") and attrs.get("__method__")
assert attrs.get("__type__") in ["async", "sync", "async_generator"]
args = json.loads(attrs["__args__"])
if "model_id" in args:
assert args.get("model_id") == text_model_id
else:
assert args.get("model") == text_model_id
# Verify token metrics in response
# Note: Llama Stack emits token metrics in the response JSON, not via OTel Metrics API
usage = response.usage if hasattr(response, "usage") else response.get("usage")
assert usage
prompt_tokens = usage.get("prompt_tokens") if isinstance(usage, dict) else usage.prompt_tokens
completion_tokens = usage.get("completion_tokens") if isinstance(usage, dict) else usage.completion_tokens
total_tokens = usage.get("total_tokens") if isinstance(usage, dict) else usage.total_tokens
assert prompt_tokens is not None and prompt_tokens > 0
assert completion_tokens is not None and completion_tokens > 0
assert total_tokens is not None and total_tokens > 0
# Verify token usage metrics in response
metrics = mock_otlp_collector.get_metrics()
print(f"metrics: {metrics}")
assert metrics
for metric in metrics:
assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"]
assert metric.unit == "tokens"
assert metric.data.data_points and len(metric.data.data_points) == 1
match metric.name:
case "completion_tokens":
assert metric.data.data_points[0].value == response.usage.get("completion_tokens")
case "total_tokens":
assert metric.data.data_points[0].value == response.usage.get("total_tokens")
case "prompt_tokens":
assert metric.data.data_points[0].value == response.usage.get("prompt_tokens")